УДК 539.1.08

КАЛИБРОВКА ЛИВНЕВОГО СВИНЦОВО-СЦИНТИЛЛЯЦИОННОГО СПЕКТРОМЕТРА НА КОСМИЧЕСКОМ ИЗЛУЧЕНИИ

В. И. Алексеев¹, В. А. Басков¹, В. А. Дронов¹, А. И. Львов¹, А. В. Кольцов¹, Ю. Ф. Кречетов², В. В. Полянский¹, С. С. Сидорин¹

Представлены результаты калибровки космическими мюонами ливневого свинцово-сцинтилляционного спектрометра типа "сэндвич" толщиной $8.5X_0$, предназначенного для работы в высокоинтенсивных фотонных и электронных пучках (~ 10^6 частиц/сек) с энергией 0.1-1.0 ГэВ. Обнаружено, что относительное энергетическое разрешение спектрометра зависит от угла входа космических мюонов в спектрометр в вертикальной плоскости и не зависит от угла бхода в горизонтальной плоскости. Относительное энергетическое разрешение спектрометра составило $\delta = 16\%$. Помещение перед спектрометра до $\delta = 9\%$.

Ключевые слова: спектрометр, сэндвич, сместитель спектра, космические мюоны, триггер.

В экспериментальной физике для регистрации электромагнитных продуктов распадов (гамма-квантов, электронов и позитронов), а также определения характеристик калибровочных электронных (позитронных) и фотонных пучков остаётся актуальной задача совмещения в одном детекторе хорошего временного и энергетического разрешений. Хорошее энергетическое разрешение традиционно достигается применением различных типов кристаллов (NaI(Tl), CsI и т. д.), в которых для получения хорошего

¹ ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: baskov@x4u.lebedev.ru.

² Объединенный институт ядерных исследований, 141980 Россия, Московская область, Дубна, ул. Жолио-Кюри, 6.

временного разрешения используется разбиение детекторов на составные части с вставками из быстрого пластического сцинтиллятора или выделение быстрой компоненты во временном спектре [1]. Тем не менее, остаётся интерес к наиболее дешевым и обладающими большими конструктивными возможностями многопластинчатым свинцовосцинтилляционным спектрометрам типа "сэндвич" [2, 3].

В Отделе ядерных исследований Физического института им. П. Н. Лебедева на ускорителе "Пахра" созданы калибровочный канал высокоинтенсивного ~ 10^{10} e⁻/сек выведенного пучка электронов энергией 250–500 МэВ с возможностью изменения интенсивности до ~ $10^3 - 10^5$ e⁻/сек и калибровочный квазимонохроматический пучок вторичных электронов (позитронов) на основе тормозного пучка фотонов с энергией 30–300 МэВ и интенсивностью при диаметре основного коллиматора 30 мм до ~ 10^2 e⁻(e⁺)/сек [4]. Для определения характеристик калибровочных пучков создан двухканальный ливневый свинцово-сцинтилляционный спектрометр (ЛС) со снятием сигналов с помощью одного сместителя спектра (шифтера) (рис. 1).

Рис. 1: Схема двухканального ливневого свинцово-сцинтилляционного спектрометра (ЛС) с использованием сместителя спектра (шифтера): 1 – свинцовосцинтилляционная сборка; 2 – оргстекло со сместителем спектра; 3 – алюминизированный майлар; 4 – ФЭУ-85; 5 – делитель напряжения; 6 – корпус для ФЭУ; 7 – внешний светозащитный корпус.

Рис. 2: Схема калибровки ЛС на космических мюонах: C_1 - C_3 – сцинтилляционные триггерные счетчики; Pb – свинцовый блок; ЛС – ливневой свинцовосцинтилляционный спектрометр.

При конструировании свинцово-сцинтилляционного спектрометра было учтено, что применение фотоумножителей (ФЭУ) с быстрым временем формирования сигнала, сцинтилляторов с быстрым временем высвечивания и наличие двух каналов, с помощью которых можно будет формировать внутренний триггер, даст возможность работать спектрометру в условиях больших загрузок и значительно снизить число случайных совпадений. Учитывалось также, что снижение числа случайных совпадений будет обусловлено наличием естественного энергетического порога, существующего в случае развития электромагнитного ливня в веществе спектрометра. Поэтому, для снятия сигнала со свинцово-сцинтилляционной сборки было решено использовать сместитель спектра (шифтер) [3, 5].

Конструкция ЛС является типичной для спектрометров такого типа. Спектрометр содержит 23 пластины свинца (2 мм) и пластического сцинтиллятора типа "полистирол" (5 мм) с поперечными размерами 160×160 мм². Общая толщина спектрометра составила $8.5X_0$ (X_0 – радиационная длина). Для улучшения светосбора между свинцовыми и сцинтилляционными пластинами помещен алюминизированный майлар. Сбор света осуществляется одновременно с трех сторон свинцово-сцинтилляционной сборки одним шифтером и выводится на противоположные торцы. Шифтер является пластиной из оргстекла шириной 160 мм, длиной 600 мм и толщиной 3 мм с нанесенной на поверхность оргстекла ("поверхностный" шифтер) спектросмещающей добавкой (1.5-дифенил-3 стирил-празонин). Полная длина пластины оргстекла от ФЭУ до ФЭУ 600 мм, длина покрытия составляет 400 мм, длина прозрачных промежутков между спектросмещающим покрытием и выходными торцами пластин к ФЭУ составляет 100 мм. Свет с каждого торца пластины снимается фотоумножителями ФЭУ-85 со стандартными делителями напряжения.

Рис. 3: Зависимость средней амплитуды, относительного энергетического разрешения каналов ЛС и относительного энергетического разрешения составного ливневого спектрометра, состоящего из ЛС и дополнительной сборки (ДС), от напряжения на делителях напряжения ФЭУ каналов ЛС и ДС: 1, 2 – зависимости средней амплитуды сигналов каналов 1 и 2 ЛС, соответственно; 3, 4 – зависимости относительного энергетического разрешения каналов 1 и 2 ЛС, соответственно; 5 – зависимость относительного энергетического разрешения составного спектрометра ЛС+ДС.

Предварительная калибровка ЛС была произведена на мюонах космического излучения. Схема калибровки представлена на рис. 2. Размеры триггерных счетчиков составляли: C_1 и $C_2 - 40 \times 40 \times 5$ мм³, $C_3 - 20 \times 20 \times 5$ мм³. Толщина свинцового блока между C_2 и C_3 составляла 70 мм. Углы входа частиц в ЛС θ_x и θ_y изменялись перемещением C_3 вдоль осей X и Y, соответственно. Положения счетчиков C_1 и C_2 не менялись. Космические мюоны являются минимальноионизирующими частицами и выделяют в пластическом сцинтилляторе энергию ~2 MэB/см, поэтому суммарное энерговыделение в сцинтилляционных пластинах ЛС составляет ~23 МэВ.

На рис. 3 представлены зависимости средних амплитуд (зависимости 1 и 2) и энергетических разрешений (зависимости 3 и 4) каналов ЛС от напряжений на делителях напряжений при прохождении мюонов через центр спектрометра ($\theta_x = \theta_y = 0$). Видно, что зависимости средних амплитуд обоих каналов ЛС в пределах исследованных напряжений на делителях напряжений линейные. Наилучшие относительное энергетические разрешения каналов оказались равными $\delta_1 \approx 20\%$ и $\delta_2 \approx 18\%$ при напряжениях

Рис. 4: Зависимости средней амплитуды сигналов отдельных каналов и суммарной амплитуды ЛС от угла входа мюонов в спектрометр: 1–3 – относительно горизонтальной оси (θ_x) ; 4–6 – относительно вертикальной оси (θ_y) (1, 4 – 1 канал ЛС; 2, 5 – 2 канал ЛС; 3 и 6 – зависимости суммарной амплитуды).

на делителях $U_1 = 1220$ В и $U_2 = 1265$ В, соответственно. Так как амплитуда сигнала в каналах ЛС соответствует одной и той же величине энергии, оставленной мюоном при прохождении через ЛС, то относительные энергетические разрешения каналов определялись как $\delta_{1(2)} = \sigma_{1(2)}/\langle A_{1(2)} \rangle = ((\Delta A_{1(2)}/\langle A_{1(2)} \rangle)/2.35) \cdot 100\%$, где $\sigma_{1(2)}$ – стандартное отклонение средней амплитуды сигналов амплитудного спектра первого (второго) канала; $\Delta A_{1(2)}$ – полная ширина на половине высоты амплитудного спектра сигналов с ФЭУ первого (второго) канала; $\langle A \rangle$ – средняя амплитуда в амплитудном спектре первого (второго) канала; 2.35 – коэффициент пропорциональности, определяющий связь соотношения ΔE и σ ($\Delta E = 2 \cdot \sigma \cdot \sqrt{2} \cdot \ln 2 \approx 2.35 \cdot \sigma$).

На рис. 4 представлены зависимости изменения средних амплитуд сигналов каналов $\langle A \rangle$ от углов θ_x и θ_y входа мюонов в спектрометр. Углы входа мюонов в спектрометр относительно каждой из осей θ_x и θ_y изменялись от -16° до $+16^\circ$. Видно, что амплитуды сигналов обоих каналов ЛС при изменении θ_x (зависимости 1 и 2), в отличие от амплитуд сигналов при изменении θ_y (зависимости 4 и 5), практически постоянны. Такой же эффект наблюдается и в сравнении зависимостей суммарных амплитуд обоих каналов (зависимости 3 и 6). Это означает, что при изменении θ_x трехстороннее светособирание со сцинтилляционных пластин ЛС однородно. Можно предположить, что при изменении θ_x уменьшение величины светособирания с одной стороны ЛС ведет к увеличению величины светособирания с другой стороны ЛС в такой пропорции, что общая величина светособирания практически постоянна. Если меняется θ_y , то отсутствие светособирания с четвертой стороны ЛС приводит к неоднородности в величине светособирания и непостоянству амплитуды сигналов.

Зависимости изменения относительного энергетического разрешения ЛС от углов входа мюонов в спектрометр θ_x и θ_y представлены на рис. 5. Относительное энергетическое разрешение отдельных каналов ЛС (зависимости 1 и 2) при изменении θ_x непостоянно и меняется в пределах ~10% от значений при $\theta = 0^\circ$. Энергетическое разрешение спектра суммы сигналов каналов (зависимость 3) практически во всем измеренном диапазоне углов θ_x постоянно и составило $\delta \approx 16\%$. Результат неоднородности светособирания при изменении угла входа мюонов в ЛС относительно θ_y приводит к тому, что наблюдается неоднородность и в энергетическом разрешении отдельных каналов и суммы сигналов (зависимости 4, 5 и 6) во всем измеренном диапазоне углов θ_y . Неоднородность в энергетическом разрешении диапазоне углов θ_y . Неоднородность в энергетическом разрешения диапазоне углов θ_y .

Рис. 5: Зависимости относительного энергетического разрешения ЛС от угла входа мюонов в спектрометр: 1–3 – зависимости от угла входа мюонов относительно горизонтальной оси (θ_x) ; 4–6 – зависимости от угла входа мюонов относительно вертикальной оси (θ_y) (1, 4 и 2, 5 – зависимости для каналов 1 и 2, соответственно; 3 и 6 – зависимости суммы каналов).

Для улучшения энергетического разрешения перед ЛС была помещена дополнительная свинцово-сцинтилляционная сборка ДС, состоящая из 4 пластин свинца толщиной 3 мм и сцинтиллятора толщиной 5 мм. Размеры пластин ДС составляли 100×100 мм². Съем света осуществлялся с 4 сторон пластин шифтером с выводом света на ФЭУ-85 [3]. Относительное энергетическое разрешение составного ливневого спектрометра ЛС+ДС (СЛС) от напряжения на делителе ФЭУ ДС представлено на рис. 3 (зависимость 5). Наилучшее разрешение СЛС достигается при напряжении на делителе напряжения ДС U = 1150 В и составляет $\delta = 9\%$.

Калибровка космическими мюонами двухканального ливневого свинцовосцинтилляционного спектрометра на сместителе спектра показала, что существует зависимость средней амплитуды сигналов отдельных каналов спектрометра и суммарного сигнала, а также относительного энергетического разрешения отдельных каналов и общего относительного разрешения от углов входа мюонов в спектрометр в исследуемом диапазоне углов входа ±16°. При изменении углов входа по горизонтали θ_x зависимость практически отсутствует. Наилучшее относительное энергетическое разрешение достигается при прохождении мюонов по центру спектрометра при угле $\theta_x = \theta_y = 0^\circ$ и составляет $\delta = 16\%$. Расположение перед ЛС дополнительной свинцово-сцинтилляционной сборки ДС и съемом света с помощью сместителя спектра с четырех сторон сборки приводит к улучшению относительного энергетического разрешения суммарного ливневого спектрометра ЛС+ДС (СЛС), которое достигает величины $\delta = 9\%$. Таким образом, ливневой свинцово-сцинтилляционный спектрометр способен определять с хорошей точностью энергетические характеристики электронных (позитронных) и фотонных пучков, использоваться в качестве самостоятельного детектора в физических экспериментах. Более детально временное разрешение спектрометра предполагается изучить непосредственно при работе на высокоинтенсивном калибровочным пучке ускорителя "Пахра".

Авторы благодарны Л.А. Горбову за помощь в работе.

Работа выполнена при поддержке грантов Российского Фонда Фундаментальных Исследований (NICA – РФФИ) № 18-02-40061 и № 18-02-40079.

ЛИТЕРАТУРА

- [1] В. А. Басков, Ю. А. Башмаков, А. В. Верди и др., ПТЭ № 1, 42 (1995).
- [2] В. А. Басков, Б. Б. Говорков, В. В. Полянский, Краткие сообщения по физике ФИАН 41(5), 37 (2014). DOI: 10.3103/S1068335614050054.
- [3] В. А. Басков, Б. Б. Говорков, В. В. Полянский, Краткие сообщения по физике ФИАН 43(3), 37 (2016). DOI: 10.3103/S1068335616030052.
- [4] В. И. Алексеев, В. А. Басков, В. А. Дронов и др., ПТЭ № 2, 1 (2019). DOI: 10.1134/S0020441219020143.
- [5] В. А. Басков, А. В. Верди, Б. Б. Говорков и др., Препринт ФИАН № 38 (ФИАН, Москва, 1999).

Поступила в редакцию 26 марта 2020 г.

После доработки 18 мая 2020 г.

Принята к публикации 21 июля 2020 г.