УДК 539.126.6

ВОССТАНОВЛЕНИЕ И ИЗУЧЕНИЕ $\Xi_{\rm b}^-$ -БАРИОНОВ НА ДАННЫХ СМS

К.М. Иванов

Данная работа посвящена вопросу экспериментального изучения и восстановления Ξ_b^- -барионов с использованием данных, набранных экспериментом CMS Большого адронного коллайдера в 2016–2018 годах в протонпротонных столкновениях с энергией в системе центра инерции $\sqrt{s} = 13$ ТэВ, что соответствует интегральной светимости 140 фб⁻¹. Было восстановленно более 900 событий распада $\Xi_b^- \to J/\psi \Xi^-$, где $J/\psi \to \mu^+\mu^-$, $\Xi^- \to \Lambda\pi^-$, $\Lambda \to p\pi^-$. Измеренная масса Ξ_b^- бариона прекрасно согласуется с табличной, а полученные результаты демонстрируют возможность выполнять работы по спектроскопии прелестных адронов на экспериментальной установке CMS.

Ключевые слова: CMS, физика частиц, *b*-физика, спектроскопия.

Введение. Ξ_b -барионы – семейство изодублетов с кварковым составом qsb (где легкий кварк первого поколения q является u для Ξ_b^0 и d для Ξ_b^-), имеющих сразу два аромата: прелесть B = -1, странность S = -1. Изучение этих частиц началось с обнаружения коллаборациями D0 [1] и CDF [2] распада $\Xi_b^- \to J/\psi \Xi^-$ в 2007 г. в протонантипротонных столкновениях на Тэватроне. В 2011 г. CDF также обнаружила и нейтральный Ξ_b^0 в распаде на $\Xi_c^+ \pi^-$ [3].

В соответствии с теоретическими предсказаниями [4, 5], у семейства Ξ_b должно существовать и множество возбуждений, различные изодублеты которых характеризуются спином *j* легкого *qs* дикварка и спин-четностью бариона J^P (так, для основного состояния j = 0 и $J^P = 1/2^+$). Несколько таких Ξ_b резонансов было обнаружено экспериментами Большого адронного коллайдера (БАК) в сильных распадах: Ξ_b^{*0} коллаборацией СМS [6] (позднее подтвержден на LHCb [7]) и состояния $\Xi_b'^-$, Ξ_b^{*-} на LHCb [8], где Ξ_b'

МФТИ, 141700 Россия, Московская область, Долгопрудный, Институтский пер., 9; e-mail: kirill.ivanov@cern.ch.

имеет характеристики $j = 1, J^P = 1/2^+$, а $\Xi_b^* - j = 1, J^P = 3/2^+$. Недавно в эксперименте LHCb был обнаружен еще один резонанс, $\Xi_b(6227)^-$ [9], но его квантовые числа неизвестны и нуждаются в дальнейших исследованиях.

Таким образом, на примере семейства Ξ_b видно, что эксперименты БАК благодаря большой энергии *pp*-столкновений и рекордным объемам записанных данных позволяют выполнять исследования в области спектроскопии тяжелых адронов, в частности, поиск новых состояний и распадов, точные измерения их масс и времен жизни. Это важно для проверки и уточнения теоретических моделей сильного межкваркового взаимодействия в квантовой хромодинамике. Так как большинство возбужденных состояний распадается по сильному каналу на основное состояние + легкие адроны, для поиска новых резонансов очень важным является вопрос надежного восстановления и изучения основных состояний тяжелых адронов. Именно этому и посвящена настоящая работа, описывающая методику, процедуру и результаты восстановления Ξ_b^- адронов в канале $\Xi_b^- \to J/\psi\Xi^-$ с последующими распадами $J/\psi \to \mu^+\mu^-$, $\Xi^- \to \Lambda\pi^-$, $\Lambda \to p\pi^-$. Были использованны данные, набранные детектором CMS БАК [10] в 2016–2018 годах в результате протон-протонных столкновений при энергии в системе центра инерции $\sqrt{s} = 13$ ТэВ, что соотвествует интегральной светимости 140 фб⁻¹.

Отбор и восстановление событий. Для восстановления кандидатов Ξ_b^- используется процедура, близкая к используемым в предыдущих работах CMS по *b*-физике. Схематичное изображение топологии распада представлено на рис. 1.

Рис. 1: Топология распада $\Xi_b^- \to J/\psi \Xi^- c$ последующими распадами $J/\psi \to \mu^+\mu^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-.$

Реконструкция начинается с поиска и восстановления двух мюонов противоположного заряда с ограничениями на поперечный импульс $p_{\rm T}(\mu^{\pm}) > 3.0$ ГэВ и псевдобыстроту $|\eta(\mu^{\pm})| < 2.4$, прошедших soft-muon идентификацию CMS [11]. Их треки фитируются в общую вершину с наложением требования на χ^2 вероятность фита более 1%. Масса димонного кандидата должна принадлежать диапазону 2.9 ГэВ $< M(\mu^+\mu^-) < 3.45$ ГэВ по инвариантной массе для предварительного отбора событий и затем – в пределах 100 МэВ от табличной массы J/ψ согласно [12].

Затем кандидаты Λ формируются как удаленная вершина распада с двумя исходящими треками в форме буквы V с суммарным нулевым зарядом (V0-кандидаты), что соответствует распаду $\Lambda \to p\pi^-$. Треку с наибольшим импульсом присваивается массовая гипотеза протона, соответственно второму – пиона. Инвариантная масса $p\pi^$ должна лежать в массовом окне 10 МэВ от табличной массы Λ согласно [12], что соответствует примерно трем детекторным разрешениям, а вероятность фита треков в общую вершину должна быть более 1%. Также отобранный V0-кандидат должен иметь $p_{\rm T} > 1$ ГэВ.

После этого для восстановления кандидатов Ξ^- отобранный ранее Λ барион комбинируется с заряженным треком с пионной гипотезой, удовлетворяющим требованиям $p_{\rm T}(\pi^-) > 0.3 \ \Gamma$ эВ и $|\eta(\pi^-)| < 2.4$. Вероятность вершинного фита $\Xi^- \to \Lambda \pi^$ должна быть выше 1%, а инвариантная масса кандидатов должна лежать в диапазоне $|M(\Lambda \pi^-) - m^{\rm PDG}(\Xi^-)| < 10 \ M$ эВ, соответствующему примерно 3 разрешениям по массе Ξ^- . Так как Λ является долгоживущей частицей и ее распад удален от вершины Ξ^- , накладывается ограничение на $\cos(\alpha(\Lambda, \Xi^-))$, который должен быть положительным. Здесь $\alpha(\Lambda, \Xi^-) = \angle \{\vec{L}_{xy}(\Lambda - \Xi^-), \vec{p}_{\rm T}(\Lambda)\}$ – направляющий угол между импульсом Λ и вектором ее отлета от вершины Ξ^- в поперечной плоскости.

Наконец, кандидаты Ξ_b^- получаются в результате фитирования отобранных J/ψ и Ξ^- в общую вершину с требованием совпадения массы димюонного кандидата с известной массой J/ψ мезона [12]. При выборе первичной вершины (PV) из всех восстановленных в результате *pp*-столкновений выбирается та, которая наиболее соответствует рождению восстановленного кандидата Ξ_b^- . Для каждой PV вычисляется направляющий на нее угол между импульсом кандидата Ξ_b^- и вектором между PV и вершиной распада Ξ_b^- , после чего выбирается та PV, для которой этот угол минимален (косинус максимален). При таком переборе PV проверяется, чтобы формирующие положение PV треки не совпадали ни с одним из тех пяти, которые были отобраны на предыдущих этапах. В случае нахождения совпадения такой трек удаляется из списка формирующих PV,

и положение PV вычисляется заново с помощью фита всех этих треков.

Затем на отобранные кандидаты Ξ_b^- накладываются следующие ограничения: $p_{\mathrm{T}}(\Xi_b^-) > 10 \ \Gamma$ эВ, $P_{vtx}(\Xi_b^-) > 1\%$. Также в силу значительного времени жизни Ξ^- необходимо потребовать $\cos \alpha(\Xi^-, \Xi_b^-) > 0.999$ и наложить на пион из распада $\Xi^- \to \Lambda \pi^-$ ограничение на значимость поперечного прицельного параметра $d_{xy}/\sigma_{d_{xy}} > 1$, где этот параметр d_{xy} определяется как наименьшее расстояние между треком и PV. Так как распад b кварка должен быть значимо отдален от положения PV, вершина распада кандидата Ξ_b^- должна удовлетворять условиям на значимость отлета от области pp-столкновений $L_{xy}(\Xi_b^-, PV) > 3\sigma_{L_{xy}(\Xi_b^-, PV)}$ и на направляющий угол $\cos \alpha(\Xi_b^-, PV) > 0.99$. Восстановленная инвариантная масса должна лежать в диапазоне [5.6, 6.0] ГэВ.

Для получения детекторных разрешений по инвариантной массе были использованы наборы смоделированных данных CMS, сгенерированные методом Монте-Карло. Процедура реконструкции событий в симуляции полностью идентична используемой для реальных данных за исключением дополнительного требования соответствия восстановленных частиц с теми, что были на самом деле сгенерированы.

Изучение распадов $\Xi^- \to \Lambda \pi^- u \Xi_b^- \to J/\psi \Xi^-$. Полученные распределения по инвариантной массе для $\Lambda \pi^- u J/\psi \Xi^-$ представлены на рис. 2 (слева и справа, соответственно). С использованием Монте-Карло симуляции были получены следующие значения детекторного разрешения: 3.55 ± 0.15 МэВ для сигнала $\Xi^- \to \Lambda \pi^-$ и 17.8 ± 1.2 МэВ – для $\Xi_b^- \to J/\psi \Xi^-$.

Таблица 1

Параметры, полученные в результате аппроксимаций распределений по инвариантной массе $\Lambda \pi^-$ и $J/\psi \Xi^-$. Массы и разрешения даны в МэВ. Погрешности являются только статистическими

Сигнал	N	$m^{ m fit}$	$\sigma_{\rm eff}$ (MC)	$\chi^2/n_{ m dof}$
$\Xi^- ightarrow \Lambda \pi^-$	2269 ± 68	1321.91 ± 0.09	3.55	112.9/96
$\Xi_b^- o J/\psi \Xi^-$	932 ± 42	5796.95 ± 0.73	17.8	103.6/96

Аппроксимация отобранных событий выполнена с помощью библиотеки RooFit программного пакета ROOT. Для обоих изучаемых распределений сигнальная функция смоделирована двойной функцией Гаусса с общим средним, форма которой определена из симуляции, в то время как фон описан полиномом 1-ой степени. Численные результаты аппроксимации представлены в табл. 1. Измеренная масса Ξ^- гиперона равна 1321.92 ± 0.11 МэВ, что находится в согласии с результатами Particle Data Group (PDG) [12] 1321.71 ± 0.07 МэВ. Результаты аппроксимации для массы Ξ_b^- -бариона, 5796.95 ± 0.73 МэВ, также отлично согласуются с табличными: $m_{\Xi_b^-}^{\text{PDG}} = 5797.0 \pm 0.9$ МэВ [12].

Рис. 2: Распределения по инвариантной массе $\Lambda \pi^-$ (слева) и $J/\psi \Xi^-$ (справа) кандидатов, полученных на полном наборе данных 2016–2018 годов pp-столкновений. Точки показывают данные, толстая красная кривая — результаты аппроксимаций, тонкие зеленые линии описывают вклады сигнальных компонент, а фон изображен фиолетовой штрихпунктирной линией.

Заключение. Таким образом, было восстановлено 932 ± 42 события Ξ_b^- -бариона в его распаде $\Xi_b^- \to J/\psi \Xi^-$, что почти в 10 раз превосходит предыдущий результат коллаборации CMS [6]. Это является первым изучением спектроскопии Ξ_b -барионов коллаборацией CMS на данных RunII БАК. Измеренная в работе масса Ξ_b^- -бариона 5796.95±0.73 МэВ прекрасно согласуется с усредненным значением PDG [12] 5797.0±0.9, а также с недавним измерением коллаборации LHCb 2019 года [13] 5797.70±0.39±0.15± 0.17 МэВ, где вторая и третья ошибка связаны с систематическими погрешностями и неточностью табличного значения массы Λ_b^0 -бариона. Полученные нами результаты демонстрируют отличную способность эксперимента CMS восстанавливать *b*-адроны и открывают возможности для дальнейшего изучения спектроскопии тяжелых состояний, распадающихся с участием Ξ_b^- -бариона.

ЛИТЕРАТУРА

- V. Abazov and others (D0 Collaboration), Phys. Rev. Lett. 99, 052001 (2007). DOI:10.1103/PhysRevLett.99.052001.
- [2] T. Aaltonen and others (CDF Collaboration), Phys. Rev. Lett. 99, 052002 (2007).
 DOI:10.1103/PhysRevLett.99.052002.
- [3] T. Aaltonen and others (CDF Collaboration), Phys. Rev. Lett. 107, 102001 (2011).
 DOI:10.1103/PhysRevLett.107.102001.
- [4] E. Klempt and J.-M. Richard, Rev. Mod. Phys. 82, 1095 (2010).
- [5] M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner, Annals Phys. **324**, 2 (2009). DOI:10.1016/j.aop.2008.05.003.
- [6] S. Chatrchyan and others (CMS Collaboration), Phys. Rev. Lett. 108, 252002 (2012).
 DOI:10.1103/PhysRevLett.108.252002.
- [7] R. Aaij and others (LHCb Collaboration), JHEP 05, 161 (2016).
 DOI:10.1007/JHEP05(2016)161.
- [8] R. Aaij and others (LHCb Collaboration), Phys. Rev. Lett. 114, 062004 (2015).
 DOI:10.1103/PhysRevLett.114.062004.
- [9] R. Aaij and others (LHCb Collaboration), Phys. Rev. Lett. 121(7), 072002 (2018).
 DOI:10.1103/PhysRevLett.121.072002.
- [10] S. Chatrchyan and others (CMS Collaboration), JINST 3, 1 (2008) S08004.
 DOI:10.1088/1748-0221/3/08/S08004.
- [11] S. Chatrchyan and others (CMS Collaboration), JINST 7, 1 (2012) P10002.
 DOI:10.1088/1748-0221/7/10/P10002.
- M. Tanabashi and others (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
 DOI:10.1103/PhysRevD.98.030001.
- [13] R. Aaij and others (LHCb Collaboration), Phys. Rev. D 99(5), 052006 (2019).
 DOI:10.1103/PhysRevD.99.052006.

Поступила в редакцию 19 августа 2020 г.

После доработки 24 ноября 2020 г.

Принята к публикации 25 ноября 2020 г.

Публикуется по рекомендации Московской международной школы физики-2020 (ФИАН, Москва).