УДК 539.12.132

ИЗМЕРЕНИЕ ПАРАМЕТРА МИШЕЛЯ ξ' ЛЕПТОННОГО РАСПАДА τ -ЛЕПТОНА НА БУДУЩЕЙ СУПЕР ЧАРМ-ТАУ ФАБРИКЕ

Д. А. Бодров^{1,2}

В статье обсуждается метод, позволяющий впервые измерить поляризацию мюонов из распадов т-лептонов на Супер чарм-тау фабрике. Для измерения поляризации предлагается использовать мюоны, распавшиеся на лету в дрейфовой камере детектора, когда оба трека, материнский и дочерний, восстановились программой реконструкции. Метод основан на корреляции между спином мюона и импульсом дочернего электрона. Мы использовали моделирование методом Монте-Карло с параметрами детектора на Супер чарм-тау фабрике для оценки числа распавшихся на лету мюонов. Были изучены возможные фоновые процессы и предложены методы их подавления. Для поляризации мюонов ожидаемая статистическая неопределенность измерения составила около 2%.

Ключевые слова: параметры Мишеля, физика au-лептона, Супер чарм-тау фабрика.

Введение. За последние десятилетия Стандартная модель (СМ) была проверена в различных экспериментах с высокой точностью. На основе экспериментальных данных была подтверждена ее превосходная предсказательная способность. Однако с увеличением точности в будущих экспериментах улучшится чувствительность к эффектам физики за пределами СМ, которые должны существовать ввиду неполноты СМ. Изучение τ -лептонов является важной составляющей поиска вклада Новой физики. В частности, измерение параметров Мишеля [1] лептонных распадов τ -лептонов позволяет сравни-

¹ Национальный исследовательский университет "Высшая школа экономики", 101000 Россия, Москва, Мясницкая улица, 20; e-mail: bodrov.da@phystech.edu.

² МФТИ, 141701 Россия, Московская обл., Долгопрудный, Институтский пер., 9.

вать экспериментальные результаты с теоретическими предсказаниями без неопределенности, связанной с расчетами КХД.

Общий вид лоренц-инвариантного матричного элемента $\tau^- \to l^- \nu_\tau \bar{\nu}_\ell$ ($\ell = e$ или μ):

$$M = \frac{4G_F}{\sqrt{2}} \sum_{\substack{\rho = S, \ V, \ T\\ \varepsilon, \ \mu = R, \ L}} g_{\varepsilon\mu}^{\rho} \left\langle \bar{\ell}_{\varepsilon} \left| \Gamma^{\rho} \right| (\nu_{\ell})_{\alpha} \right\rangle \left\langle (\bar{\nu}_{\tau})_{\beta} \left| \Gamma_{\rho} \right| \tau_{\mu} \right\rangle, \tag{1}$$

$$\Gamma^S = 1, \quad \Gamma^V = \gamma^{\mu}, \quad \Gamma^T = \frac{1}{\sqrt{2}} \sigma^{\mu\nu} = \frac{i}{2\sqrt{2}} (\gamma^{\mu} \gamma^{\nu} - \gamma^{\nu} \gamma^{\mu}).$$

Здесь $\rho=S,V,T$ и означает скалярное, векторное или тензорное взаимодействие, $\epsilon,\mu=L,R$ означает левую и правую компоненту биспинора лептона. Выбор $\rho,\,\epsilon$ и μ фиксирует α и β . Десять комплексных констант $g_{\varepsilon\mu}^{\rho}$ ($g_{RR}^{T}=g_{LL}^{T}\equiv 0$) характеризуют слабое взаимодействие заряженных токов. В СМ оно описывается обменом W^{\pm} -бозона с лоренц-структурой V-A (единственная ненулевая константа $g_{LL}^{V}=1$).

Наблюдаемые величины в распаде лептона удобно выражать в терминах параметров Мишеля, которые являются билинейными комбинациями констант связи $g_{\varepsilon\mu}^{\rho}$. Параметры Мишеля определяют лоренц-структуру взаимодействия заряженных токов в теории слабого взаимодействия. В распадах мюонов (классифицируется как лептон) различными экспериментами было измерено большинство из них с точностью лучше нескольких процентов [2]. Напротив, только 4 параметра были измерены с высокой точностью в распадах τ -лептона: ρ , η , ξ и $\xi\delta$. Они описывают дифференциальную ширину распада, усредненную по поляризации дочернего лептона. Благодаря большому количеству $\tau^+\tau^-$ -пар, набранных экспериментом Belle, коллаборации удалось измерить параметры радиационного распада τ -лептона $\bar{\eta}$ и $\xi\kappa$ [3], хотя суммарная статистическая и систематическая неопределенность составила порядка 100%. Эти параметры связаны с параметрами Мишеля ξ' и ξ'' через линейные комбинации с параметрами ξ , $\xi\delta$ и ρ .

В данной статье мы предлагаем и обсуждаем метод первого прямого измерения поляризации мюонов из распадов τ -лептонов на будущей Супер чарм-тау фабрике (СЧТФ) [4, 5]. Поляризация мюонов описывается комбинацией параметров Мишеля, один из которых ξ' .

Метод. Для измерения поляризации мюонов предлагается использовать угловое распределение электронов в системе покоя мюонов, распавшихся в дрейфовой камере, поскольку импульс электрона коррелирует со спином мюона. В случае продольно-поляризованных мюонов угловое распределение электронов описывается следующим выражением:

$$\frac{1}{\Gamma} \frac{d\Gamma(\cos \theta)}{d\cos \theta} = \frac{1}{2} \left(1 - \frac{P_{\mu}}{3} \cos \theta \right), \tag{2}$$

где θ — угол между импульсами электрона и τ -лептона в системе покоя мюона, а P_{μ} — степень поляризации мюонов. Восстановление $\mu^- \to e^- \nu_{\mu} \bar{\nu}_e$ включает в себя реконструкцию треков мюона и электрона и вершины распада, которая совпадает с точкой пересечения треков.

На СЧТФ система покоя τ -лептонов практически совпадает с лабораторной системой отсчета. У мюона $g_{\mu} \approx 2$, поэтому его спин и импульс поворачиваются в магнитном поле детектора на один и тот же угол, и поляризация не меняется [6]. Это позволяет нам работать с измеренными импульсами мюона и электрона, пренебрегая импульсом τ -лептона, и измерять θ в вершине распада мюона. В действительности, это принесет нам небольшую поправку ~ 0.97 к P_{μ} в уравнении (2).

Modeлирование. Для оценки ожидаемого количества событий и ожидаемой статистической точности мы использовали моделирование методом Монте-Карло. Поскольку СЧТФ на данный момент находится на стадии разработки и нет доступной программы для моделирования детектора, мы использовали некоторые общие предположения о его дрейфовой камере. По предварительной информации она будет представлять собой симметричный цилиндр с внутренним радиусом $R_{\rm in}=20\,{\rm cm}$, внешним радиусом $R_{\rm out}=80\,{\rm cm}$ и длиной $L=200\,{\rm cm}$. Среднее пространственное разрешение сигнала в ячейке было выбрано $\sigma=125\,\mu{\rm m}$, типичное для большинства современных дрейфовых камер. Магнитное поле напряженностью в 1.5 Т направлено вдоль оси пучков. СЧТФ будет работать с симметричными пучками при \sqrt{s} от $2\,{\rm F}_2{\rm B}$ до $5\,{\rm F}_2{\rm B}$. Самый продолжительный набор данных над порогом рождения τ -лептонов будет проводиться при энергии $\sqrt{s}=m_{\psi(3770)}$, поэтому мы использовали ее для нашего моделирования.

За все время работы СЧТФ планируется набрать около $2.1\cdot 10^{10}~\tau^+\tau^-$ -пар. Используя моделирование, мы оценили, что число восстановленных распадов $\mu^-\to e^-\nu_\mu\bar{\nu}_e$ с учетом эффективности реконструкции составит $N_{\rm reco}\approx 2.5\cdot 10^5$.

Полученная эффективность реконструкции, то есть отношение числа восстановленных распадов мюонов к числу смоделированных, как функция направления вылета электрона в системе покоя мюона изображена на рис. 1. Импульс электронов, вылетающих назад, в лабораторной системе отсчета (ЛСО) ниже чувствительности детектора, что объясняет нулевую эффективность для $\cos \theta \sim -1$. Вылетающие вперед электроны в ЛСО получают практически весь импульс мюонов, поэтому для программы реконструкции сложно различить два трека, что снижает эффективность восстановления.

Подавление фоновых процессов. Распады $\tau^+\tau^-$ -пары можно отличить от других процессов, возникающих в e^+e^- -столкновениях, применением высокоэффективных крите-

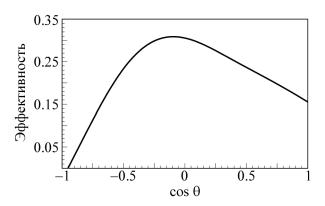


Рис. 1: Эффективность реконструкции в зависимости от направления вылета электрона в системе покоя мюона.

риев предварительного отбора, давно используемых в экспериментах. Поэтому основной вклад в фон мы ожидаем от $\tau^+\tau^-$ -событий, в которых не было интересующего нас распада мюона. Распад $\mu^- \to e^- \nu_\mu \bar{\nu}_e$ в дрейфовой камере имеет вид излома, что служит критерием для отличия этого типа событий от остальных. Однако процессы рассеяния частиц и распада легких мезонов π^+ и K^+ имеют схожий вид и могут имитировать сигнал. Для подавления вклада этих процессов предполагается использование системы идентификации частиц (в основном dE/dx-потери в объеме детектора и информация от электромагнитного калориметра), а также кинематики распада. Поскольку легкие мезоны в основном распадаются на две монохроматические частицы, предлагается использовать импульсные распределения дочерних частиц в системе покоя, распавшихся с различными массовыми гипотезами (рис. 2). Мы можем подавить вклад в фон от π^+ распадов, используя распределения, показанные на рис. 2(a) и (b), и от K^+ -распадов, используя распределения, показанные на рис. 2(а) и (с). Дополнительное подавление трехчастичных распадов каонов обеспечивается введением вето на дополнительные треки и фотоны в направлении движения каона. Коэффициент подавления для π^+ и K^+ равен $\sim 2 \cdot 10^3$ и $\sim 5 \cdot 10^2$, соответственно, сохранив эффективность для сигнала $\sim 80\%$. Таким образом, мы показали, что можно чисто выделить искомый распад, и точность определяется только статистикой отобранных сигнальных событий. Мы оцениваем, что на полной статистике $\tau^+\tau^-$ -пар, набранной за все время работы СЧТФ, статистическая неопределенность измерения продольной поляризации мюона составит $\approx 2\%$.

Аппаратные и программные требования. В этой части будут перечислены основные требования к аппаратному и программному обеспечению для экспериментальной установки. Их реализация позволит измерить продольную поляризацию мюонов с мак-

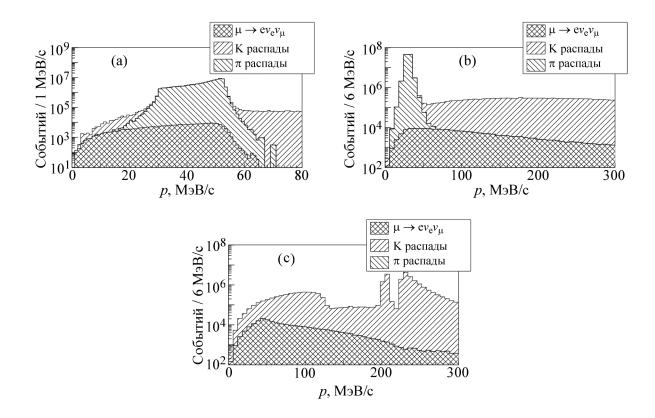


Рис. 2: Импульсные распределения для дочерней частицы в системе покоя, распавшейся для μ -, K- и π -распада. (a) массовые гипотезы родительской частицы μ , дочерней е $(\mu \to e)$; (b) массовые гипотезы $\pi \to \mu$; (c) массовые гипотезы $K \to \pi$.

симальной точностью. Во-первых, требуется большая дрейфовая камера, поскольку количество распадов мюонов зависит от максимальной длины пролета. Во-вторых, реконструкция треков частиц, распавшихся на лету в дрейфовой камере, должна проводиться совместно с реконструкцией треков от дочерних частиц. Вершина распада должна получаться из подгонки обоих треков, здесь наиболее перспективный способ реконструкции — фильтр Кальмана, допускающий излом трека. В-третьих, будет полезно восстанавливать трек первичного мюона, используя сигналы только от вершинного детектора. Все эти требования направлены на повышение эффективности восстановления $\mu^- \to e^- \nu_\mu \bar{\nu}_e$ событий и на улучшение разрешения по импульсу частиц.

 $3a\kappa$ лючение. Проведенное исследование доказывает возможность измерить продольную поляризацию мюонов из распадов τ -лептонов на будущей Супер чарм-тау фабрике с точностью около 2%. Это позволит впервые измерить с высокой точностью параметр Мишеля ξ' распада τ -лептона.

Автор статьи благодарит своего научного руководителя П. Н. Пахлова за помощь и поддержку в проведении данного исследования и в подготовке данной публикации. Я также хотел бы поблагодарить Belle группу ЛТКЛ Физического института имени П. Н. Лебедева РАН за плодотворное обсуждение этой работы на научных семинарах.

ЛИТЕРАТУРА

- [1] L. Michel, Proc. Phys. Soc. A **63**, 514 (1950). DOI: 10.1088/0370-1298/63/5/311/.
- [2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018). DOI: 10.1103/PhysRevD.98.030001.
- [3] N. Shimizu et al. (Belle), PTER **2018**, 023C01 (2018). DOI: 10.1093/pter/pty003.arXiv:1709.08833.
- [4] A. Bondar et al. (Charm-Tau Factory), Yad. Fiz. **76**, 1132 (2013). DOI: 10.1134/S1063778813090032.
- [5] Q. Luo and D. Xu, Progress on Preliminary Conceptual Study of HIEPA, a Super Tau-Charm Factory in China, in: 9th International Particle Accelerator Conference, 2018, p. MOPML013. DOI: 10.18429/JACoW-IPAC2018-MOPML013.
- [6] V. Bargmann, L. Michel, and V. Telegdi, Phys. Rev. Lett. 2, 435 (1959). DOI: 10.1103/PhysRevLett. 2.435.

Поступила в редакцию 19 августа 2020 г. После доработки 25 ноября 2020 г. Принята к публикации 26 ноября 2020 г.

Публикуется по рекомендации Московской международной школы физики—2020 (ФИАН, Москва).