УДК 539.1

ОБНАРУЖЕНИЕ РАСПАДА $\Lambda^0_{ m b} o { m J}/\psi \Lambda \phi$ В ЭКСПЕРИМЕНТЕ СМS

Н.К. Петров

Данная работа посвящена обнаружению распада $\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda \phi$ на данных, набранных экспериментом CMS Большого адронного коллайдера в 2018 году в результате протон-протонных (pp) столкновений при энергии в системе центра инерции $\sqrt{s} = 13$ ТэВ, что соотвествует интегральной светимости 60 фб⁻¹. Было измерено отношение вероятностей распадов $\mathcal{B}(\Lambda_{\rm b}^0 \rightarrow J/\psi \Lambda \phi)/\mathcal{B}(\Lambda_{\rm b}^0 \rightarrow$ $\psi(2S)\Lambda) = (8.26 \pm 0.90 (cmam.) \pm 0.68 (cucm.) \pm 0.11(\mathcal{B})) \times$ 10^{-2} , где первая погрешность статистическая, вторая – систематическая, а третъя отражает погрешности в известных вероятностях распада ϕ и $\psi(2S)$ в восстановленные нами конечные состояния.

Ключевые слова: CMS, физика элементарных частиц, b-физика, спектроскопия.

1. Введение. Изучение различных распадов b-барионов, в том числе $\Lambda_{\rm b}^0$, является важным направлением в современной физике высоких энергий. Подобные исследования могут помочь улучшить наше понимание сильных взаимодействий. Также распады $\Lambda_{\rm b}^0$ -барионов являются отличным источником экзотических состояний. Недавно коллаборация LHCb обнаружила 3 кандидата в пентакварки [1, 2] $P_c(4312)^+$, $P_c(4380)^+$ and $P_c(4450)^+$ в инвариантной массе $J/\psi p$ в распадах $\Lambda_{\rm b}^0 \to J/\psi p K^-$. Поэтому дальнейшие исследования распадов $\Lambda_{\rm b}^0$ -барионов с чармонием в конечном состоянии представляют огромный интерес и могут помочь понять механизмы рождения экзотических многокварковых состояний.

Настоящая статья рассказывает об обнаружении распада $\Lambda_b^0 \to J/\psi \Lambda \phi$ [3], а также об измерении отношения вероятностей распадов $\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda \phi)/\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)$. Частицы $J/\psi, \Lambda, \phi$ и $\psi(2S)$ были восстановлены в следующих конечных состояниях: $\mu^+\mu^-, p\pi^-, K^+K^-$ и $J/\psi\pi^+\pi^-$ соответственно. Канал $\Lambda_b^0 \to \psi(2S)\Lambda$ был выбран как нормировочный по отношению к $\Lambda_b^0 \to J/\psi\Lambda\phi$ благодаря совпадающей топологии распада.

МФТИ, 141700 Россия, Московская область, Долгопрудный, Институтский пер., 9; e-mail: nikita.petrov@cern.ch.

Кроме того распад $\Lambda_{\rm b}^0 \to J/\psi \Lambda \phi$ является барионным аналогом распада В⁺ $\to J/\psi \phi K^+$, где в распределении по инвариантной массе $J/\psi \phi$ сразу несколько экспериментов [4–7] обнаружили богатую резонансную структуру. Таким образом, изучаемый нами распад может предоставить возможность проверки и дальнейшего изучения найденных экзотических состояний после набора достаточного числа сигнальных событий. Также в распаде $\Lambda_{\rm b}^0 \to J/\psi \Lambda \phi$ можно исследовать инвариантую массу $J/\psi \Lambda$, где тоже возможно наличие экзотических многокварковых состояний.

2. Отбор и восстановление событий. Процессы реконструкции $\Lambda_b^0 \to J/\psi \Lambda \phi$ и $\Lambda_b^0 \to \psi(2S)\Lambda$ кандидатов очень похожи между собой. Все начинается с восстановления треков пары мягких противоположно заряженных мюонов с $p_T(\mu^{\pm}) > 4$ ГэВ и $|\eta(\mu^{\pm})| < 2.4$. Димюон комбинируется с Λ -кандидатом, представляющим собой отлетевшую вершину и пару противоположно заряженных треков ($p\pi^-$), выходящих из нее. После чего добавляется два трека с каонными массовыми гипотезами в случае основного канала и пионными – для нормировочного. Для восстановления итогового Λ_b^0 -кандидата применяется кинематический фит треков всех вышеописаных частиц в общую вершину, с требованием совпадения массы димюона с известной массой J/ψ мезона из Particle Data Group (PDG) [8].

Для подавления комбинаторного фона используются следующие ограничения: вершина реконструированного Λ_b^0 -кандидата должна иметь значимый отлет от вершины первичного *pp*-взаимодействия, а угол между направлением вылета и импульсом Λ_b^0 быть близок к нулю. Для выделения $\psi(2S)$ и ϕ кандидатов требуется, чтобы инвариантные массы $J/\psi \pi^+ \pi^-$ и K⁺K⁻ были близки к известным значениям из PDG.

3. Получение результатов. Для вычисления отношения вероятностей распадов используется формула (1):

$$\frac{\mathcal{B}(\Lambda_{\rm b}^{0} \to J/\psi\Lambda\phi)}{\mathcal{B}(\Lambda_{\rm b}^{0} \to \psi(2\mathrm{S})\Lambda)} = \frac{N(\Lambda_{\rm b}^{0} \to J/\psi\Lambda\phi) \ \epsilon(\Lambda_{\rm b}^{0} \to \psi(2\mathrm{S})\Lambda) \ \mathcal{B}(\psi(2\mathrm{S}) \to J/\psi\pi^{+}\pi^{-})}{N(\Lambda_{\rm b}^{0} \to \psi(2\mathrm{S})\Lambda) \ \epsilon(\Lambda_{\rm b}^{0} \to J/\psi\Lambda\phi) \ \mathcal{B}(\phi \to \mathrm{K^{+}K^{-}})},$$
(1)

где $N(\Lambda_b^0 \to J/\psi \Lambda \phi)$ и $N(\Lambda_b^0 \to \psi(2S)\Lambda)$ – измеренные количества сигнальных событий для основного и нормировочного каналов, $\epsilon(\Lambda_b^0 \to J/\psi \Lambda \phi)$ и $\epsilon(\Lambda_b^0 \to \psi(2S)\Lambda)$ обозначают полные эффективности соответствующих распадов, включая аксектенс детектора и эффективность реконструкции, а $\mathcal{B}(\psi(2S) \to J/\psi \pi^+\pi^-)$ и $\mathcal{B}(\phi \to K^+K^-)$ – известные вероятности распадов, взятые из PDG.

Рис. 1: Распределения по инвариантной массе J/ $\psi \Lambda K^+K^-$ (слева) и K⁺K⁻ после вычитания фона (справа). Точки показывают данные, вертикальные линии являются статистическими погрешностями, а линии описывают результаты аппроксимации, описанной в тексте.

Используя процедуру отбора, описанную в секции 2, было получено распределение событий по инвариантной массе J/ψΛK⁺K⁻, представленное на рис. 1 (слева). Для описания этого распределения используется небинированная апроксимация, включающая сигнальную и фоновую компоненты. Сигнальная компонента описана двойной функцией Гаусса с общим центральным значением. Форма сигнала зафиксирована из симуляции Монте-Карло (MC), в то время как центральное значение и нормировка остаются свободными параметрами аппроксимации. Фон параметризован полиномом Бернштейна 3 степени со всеми свободными параметрами.

В результате аппроксимации было получено 380 ± 32 сигнальных события. Локальная статистическая значимость сигнала превышает 9 стандартных отклонений с учетом вариаций фоновых и сигнальных моделей. Важно, однако, отметить, что приведенное число событий является количеством распадов $\Lambda_b^0 \rightarrow J/\psi \Lambda K^+ K^-$. Для того чтобы извлечь количество сигнальных событий $\Lambda_b^0 \rightarrow J/\psi \Lambda \phi$, была использована техника *sPlot* [9], которая позволяет разделить сигнальную и фоновую компоненты статистически. Так для сигнальной компоненты было получено распределение $M(K^+K^-)$ с вычтенными фоновыми событиями (рис. 1, справа). Для его описания использована свертка функций релятивисткого Брейт–Вигнера и детекторного разрешения для ϕ -компоненты, и полиномом первой степени для нерезонансного вклада. Разрешение описано двойной функцией Гаусса с общим средним, форма которой определена из MC симуляции, а натуральная ширина Γ была зафиксирована равной табличному значению для φ-резонанса из PDG. Из аппроксимации было получено истинное количество сигнальных событий Λ⁰_b → J/ψΛφ равное 286 ± 29.

Рис. 2: Распределение по инвариантной массе $\psi(2S)\Lambda$ -кандидатов. Точки показывают данные, линии описывают результаты аппроксимации, описанной в тексте.

Рис. 2 показывает распределение событий инвариантной массы $\psi(2S)\Lambda$. Сигнальная компонента $\Lambda_b^0 \rightarrow \psi(2S)\Lambda$ моделируется двойной функцией Гаусса со свободным общим значением и нормировкой, в то время как его форма определена из симуляции. Фон описан полиномом Бернштейна 3 степени. В результате аппроксимации было получено 884 ± 37 сигнальных события для нормировочного канала.

В процессе изучения MC симуляций было посчитано отношение эффектвностей для основного и нормировочного каналов. Было получено значение $\epsilon(\Lambda_b^0 \to \psi(2S)\Lambda)/\epsilon(\Lambda_b^0 \to J/\psi\Lambda\phi) = 0.363 \pm 0.011.$

Одной из важных компомпонент вычисления отношения вероятностей распадов является оценка систематической погрешности. Она была получена в результате вариаций различных сигнальных и фоновых моделей. Вклад вносит также конечность размеров моделированного набора данных и некоторые различия между данными и симуляцией.

4. Результаты и выводы. Используя данные pp-столкновений, набранных в 2018 году в эксперименте CMS при энергии в системе центра инерции $\sqrt{s} = 13$ ТэВ, что соответствует интегральной светимости 60 $\phi 6^{-1}$, был обнаружен распад $\Lambda_b^0 \to J/\psi \Lambda \phi$ и измерено отношение вероятностей распадов $\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda \phi)/\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)$. Отношение $\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda \phi)/\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda)$ равняется (8.26 ± 0.90(стат.) ± 0.68(сист.) ± 0.11(\mathcal{B})) × 10⁻², где первая погрешность статистическая, вторая – систематическая, а третья отражает погрешности известных вероятностей распадов ϕ и $\psi(2S)$ в восстановленные нами конечные состояния. Обнаружение распада $\Lambda_b^0 \to J/\psi \Lambda \phi$ открывает возможность дальнейших поисков экзотических состояний в массовых спектрах $J/\psi \Lambda$ и $J/\psi \phi$.

ЛИТЕРАТУРА

- [1] R. Aaij et al., Phys. Rev. Lett. **115**, 072001 (2015).
- [2] R. Aaij et al., Phys. Rev. Lett. **122**, 222001 (2019).
- [3] A. M. Sirunyan et al., Phys. Lett. B 802, 135203 (2020).
- [4] T. Aaltonen et al., Mod. Phys. Lett. A **32**, 1750139 (2017).
- [5] S. Chatrchyan et al., Phys. Lett. B **734**, 261 (2014).
- [6] V. M. Abazov et al., Phys. Rev. Lett. **115**, 232001 (2015).
- [7] R. Aaij et al., Phys. Rev. Lett. **118**, 022003 (2017).
- [8] Particle Data Group, M. Tanabashi, et al., Phys. Rev. D 98, 030001 (2018).
- [9] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A 555, 356 (2005).

Поступила в редакцию 19 августа 2020 г.

После доработки 27 ноября 2020 г.

Принята к публикации 28 ноября 2020 г.

Публикуется по рекомендации Московской международной школы физики-2020 (ФИАН, Москва).