УДК 539.1.074.3

## СЦИНТИЛЛЯЦИОННЫЕ ХАРАКТЕРИСТИКИ НОВЫХ КРИСТАЛЛОВ LuScSiO<sub>5</sub>

М. В. Белов<sup>1</sup>, Ю. Д. Заварцев<sup>2</sup>, М. В. Завертяев<sup>1</sup>, А. И. Загуменный<sup>2</sup>, В. А. Козлов<sup>1</sup>, С. А. Кутовой<sup>2</sup>, Н. В. Пестовский<sup>1</sup>, С. Ю. Савинов<sup>1</sup>

Методом Чохральского выращены новые кристаллы LuScSiO<sub>5</sub>, обладающие собственной люминесценцией. Впервые исследованы спектры импульсной катодолюминесценции новых сцинтилляторов и их время высвечивания. Используя  $\gamma$ -кванты с энергией 662 кэВ от источника <sup>137</sup>Cs, были получены распределения числа импульсов люминесценции по амплитуде (т. н. фотопики) для новых кристаллов. Показано, что световыход кристаллов LuScSiO<sub>5</sub> составляет 13500 фотонов/МэВ.

Ключевые слова: сцинтилляционные кристаллы, гамма-излучение, время затухания сцинтилляций, импульсная катодолюминесценция.

Хорошо известный сцинтиллятор, легированный церием кристалл оксиортосиликата лютеция  $Lu_2SiO_5$  (LSO), имеет лучшее сочетание большой плотности материала, атомного номера, светового выхода и короткого времени сцинтилляции для использования в позитронно-эмиссионной томографии. Однако при использовании кристаллов LSO/LYSO в гомогенной электромагнитной калориметрии в физике высоких энергий, где используются модули длиной 20–25 см, необходимо учитывать неоднородность световыхода по длине кристалла [1]. Известно, что концентрация активатора – церия – вдоль длинного кристалла неоднородная, и это приводит к неоднородности световыхода и как следствие к ухудшению энергетического разрешения калориметров на основе LSO/LYSO. Поэтому актуально дальнейшее расширение номенклатуры новых оксидных сцинтилляционных кристаллов с собственной люминесценцией, в частности, исследование сцинтилляции ионов скандия Sc<sup>3+</sup> в кристаллах с кристаллической структурой  $Lu_2SiO_5$ .

 <sup>&</sup>lt;sup>1</sup> ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: kozlovva@lebedev.ru.
 <sup>2</sup> ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38.

Собственная люминесценция кристаллов Sc<sub>2</sub>SiO<sub>5</sub> с использованием техники времяразрешенной ВУФ спектроскопии изучалась в работе [2]. Однако плотность кристаллов Sc<sub>2</sub>SiO<sub>5</sub> низка (3.49 г/см<sup>3</sup>), что существенно ограничивает использование этого сцинтиллятора в физике высоких энергий и ядерной медицине.

Ионные радиусы ионов Lu<sup>3+</sup> и Sc<sup>3+</sup> зависят от количества окружающих ионов кислорода [3]. Ионные радиусы Lu<sup>3+</sup> равны 0.972 Å (координационное число KU=7) и 0.86 Å (KU=6). Ионные радиусы Sc<sup>3+</sup> равны 0.87 Å (KU=7) и 0.745 Å (KU=6). Близкие значения ионных радиусов позволяют в решетке Sc<sub>2</sub>SiO<sub>5</sub> легкий ион Sc<sup>3+</sup> заместить на тяжелый ион Lu<sup>3+</sup>, в результате чего в кристалле LuScSiO<sub>5</sub> увеличивается плотность и эффективный атомный номер кристаллического вещества (см. табл. 1), а это увеличивает эффективность поглощения  $\gamma$ -излучения.

Высокочистые вещества Lu<sub>2</sub>O<sub>3</sub> (99.99%), Sc<sub>2</sub>O<sub>3</sub> (99.995%) и моноизотопный оксид <sup>28</sup>SiO<sub>2</sub> (содержащий изотоп <sup>28</sup>Si в концентрации 99.91 ат.%) были использованы в качестве исходных реактивов. Выращивание кристаллов LuScSiO<sub>5</sub> осуществлялось методом Чохральского из иридиевых тиглей в атмосфере аргона 99.5+0.5%O<sub>2</sub>.

Впервые нами были исследованы сцинтилляционные характеристики новых кристаллов.

Изучение спектров импульсной катодолюминесценции (ИКЛ) проводилось на специальной установке на основе ускорителя электронов РАДАН-ЭКСПЕРТ, генерирующего импульсы электронов со средней энергией 150 кэВ, длительностью 1 нсек, частотой 1 Гц и пиковой плотностью мощности 10 MBт/см<sup>3</sup> [4]. В состав установки входил также спектрограф OCEAN FLAME-S-XR1-ES.

Спектр ИКЛ для кристалла LuScSiO<sub>5</sub> представлен на рис. 1, на котором видна полоса собственной люминесценции с максимумом 320 нм. Интенсивная люминесценция кристалла собственного характера связана с наличием в структуре ионов  $Sc^{3+}$ .

При определении времени высвечивания кристалла LuScSiO<sub>5</sub> использовался метод "задержанных совпадений", который заключается в измерении распределения временных интервалов  $\Delta t$  между возбуждением сцинтиллятора от гамма-квантов радиоактивного источника <sup>137</sup>Cs (сигнал фотоумножителя канала "Старт"), и образованием фотоэлектрона на фотокатоде ФЭУ канала "Стоп", работающего в режиме счёта фотонов. Сигналы с ФЭУ Нататаtsu R4125Q каналов "Старт" и "Стоп" поступали на дискриминаторы со следящим порогом CAEN C808 и далее на 1024-канальный времяцифровой преобразователь (TDC) KA-317, информация с которого считывалась в память персонального компьютера. На рис. 2 представлена зависимость числа интервалов от их



Рис. 1: Спектр импульсной катодолюминесценции (ИКЛ) кристалла LuScSiO<sub>5</sub>.



Рис. 2: Зависимость интенсивности высвечивания кристалла LuScSiO<sub>5</sub> от времени.

длительности, соответствующая интенсивности высвечивания от времени, для нового кристалла.

При фитировании временного спектра функцией с одной экспонентой получаем время высвечивания кристалла  $LuScSiO_5$  898.2±88.0 нсек.



Рис. 3: Амплитудное распределение кристалла  $LuScSiO_5$ , облученного  $\gamma$ -квантами от источника <sup>137</sup>Cs.

Для изучения световыхода нового кристалла LuScSiO<sub>5</sub> использовали спектры полного поглощения гамма-квантов (фотопики) от источника <sup>137</sup>Cs. Исследуемый сцинтилляционный кристалл с помощью оптической смазки Dow Corning Q2-3067 был соединен с фотоумножителем R4125Q с кварцевым окном. Все остальные поверхности кристалла были завернуты в 8–10 слоев тефлоновой ленты. Размеры образца для исследований световыхода были  $5 \times 5 \times 3$  мм<sup>3</sup>. Сигнал от фотоумножителя через предусилитель Canberra 2007B поступал на спектрометрический усилитель POLON 1101, и далее на АЦП преобразователь ADC Schlumberger JCAN-21C. На рис. 3 приведен фотопик от <sup>137</sup>Cs для кристалла LuScSiO<sub>5</sub>.

Для оценки световыхода кристалла LuScSiO<sub>5</sub> использовался хорошо известный сцинтилляционный кристалл CeF<sub>3</sub>, световыход которого равен 2400 фотонов/MэB [6]. Световыход LuScSiO<sub>5</sub> в терминах фотонов/MэB определялся путем сравнения положения его фотопика с аналогичным распределением от кристалла CeF<sub>3</sub>. Предполагая, что чувствительность фотоумножителя к высвечиванию CeF<sub>3</sub> и кристалла LuScSiO<sub>5</sub> одинакова из-за близко лежащих их эмиссионных спектров, получаем световыход кристалла LuScSiO<sub>5</sub>, равный 13500 фотонов/MэB.

Характеристики нового сцинтиллятора LuScSiO<sub>5</sub> в сравнении с известным кристаллом – ортогерманатом висмута Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> (BGO) – приведены в табл. 1.

Таблица 1

| Кристалл                                    | $\mathrm{Bi}_4\mathrm{Ge}_3\mathrm{O}_{12}$ | $LuScSiO_5$ |
|---------------------------------------------|---------------------------------------------|-------------|
| Плотность $ ho$ , г/см $^3$                 | 7.13                                        | 5.47        |
| Температура плавления $t$ , °С              | 1050                                        | 1900        |
| Эффективный атомный номер $Z_{ m solution}$ | 75                                          | 56          |
| Радиационная длина X <sub>0</sub> , см      | 1.12                                        | 1.9         |
| Световой выход, фотонов/МэВ                 | $8500^{[6]}$                                | 13500       |
| Постоянная времени затухания                | 300                                         | 900         |
| сцинтилляции $	au$ , нс                     |                                             |             |
| Максимум эмиссии $\lambda$ , нм             | 480                                         | 320         |
| Показатель преломления                      | 2.15                                        | 1.84        |
| в максимуме эмиссии                         |                                             |             |
| Гигроскопичность                            | нет                                         | нет         |

Свойства кристаллов  $Bi_4Ge_3O_{12}$  и  $LuScSiO_5$ 

Новый неактивированный кристалл LuScSiO<sub>5</sub> обладает собственной интенсивной катодолюминесценцией с максимумом при 320 нм. Абсолютный световой выход составил 13500 фотонов/ МэВ и время высвечивания сцинтилляции 900 нсек.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 18-08-01060).

## ЛИТЕРАТУРА

- Jianming Chen, Rihua Mao, Liyuan Zhang and Ren-Yuan Zhu, IEEE Transaction on Nuclear Science 54(3), 718 (2007). DOI: 10.1109/TNS.2007.897823.
- [2] В. Ю. Иванов, Е. С. Шлыгин, В. А. Пустоваров и др., Физика твердого тела 50(9), 1628 (2008). DOI: 10.1134/S1063783408090217.
- [3] B. Stroka, P. Holst, W. Tolksdorf, Philips Journal of Research 33(5/6), 186 (1978).
   ISSN? 0165-5817.
- [4] V. I. Solomonov, S. G. Michailov, A. I. Lipchak, et al., Laser Physics 16(1), 126 (2006).
   DOI: 10.1134/S1054660X06010117.
- [5] A. J. Wojtovicz, M. Balcerzyk, E. Berman and A. Lempicki, Phys. Rev. B 49(21), 14860 (1994). DOI: 10.1103/PhysRevB.49.14880.

 [6] M. Moszynski, M. Kapusta, M. Mayhugh, et al., IEEE Transaction on Nuclear Science 44(3), 1052 (1997). DOI: 10.1109/23.603803.

Поступила в редакцию 21 сентября 2020 г.

После доработки 3 февраля 2021 г.

Принята к публикации 4 февраля 2021 г.