УДК 535.361

КОГЕРЕНТНОЕ РАССЕЯНИЕ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ В НАНОДИСПЕРСНОЙ СРЕДЕ С ИНДУЦИРОВАННЫМ ПЕРЕРАСПРЕДЕЛЕНИЕМ НАНОЧАСТИЦ В ДОПОЛНИТЕЛЬНОМ СВЕТОВОМ ПОЛЕ

А. Ф. Бункин, М. А. Давыдов, В. Г. Михалевич,

В. Н. Стрельцов, А. Н. Фёдоров

Показано, что в нанодисперсной среде возникает специфическое нелинейное коллективное фотон-фотонное взаимодействие, отвечающее переходу среды в интенсивном лазерном поле в оптически плотное состояние, которое, по своему физическому смыслу, можно назвать индуцированным когерентным взаимодействием лазерных полей.

Ключевые слова: когерентное фотон-фотонное взаимодействие, лазерные поля, нанодисперсная среда.

Веедение. Характер рассеяния электромагнитной волны в жидкой суспензии диэлектрических наночастиц существенно зависит от соотношения длины волны рассеянного излучения λ и характерного расстояния между частицами. Если расстояния между частицами малы по сравнению с длиной волны λ , то, как и при молекулярном рассеянии, можно рассматривать среднее поле, определяемое когерентными полями рассеяния большого числа примесных частиц в сферическом объеме радиуса λ . В этом случае можно вводить эффективный показатель преломления, определяющий френелевское отражение от резко ограниченного слоя среды в объёме суспензии. В противном случае интенсивность рассеяния излучения в точности равна сумме интенсивностей некогерентных излучений от отдельных частиц, и не зависит от границ или формы слоя. Таким образом, суспензия по отношению к рассеянному полю является плотной или разреженной средой в зависимости от концентрации частиц и частоты поля.

Следует отметить, что в нанодисперсных средах в силу большой подвижности частиц (например, в вязких суспензиях подвижность падает с увеличением радиуса ча-

ИОФ РАН, 119991 Россия, Москва, ул. Вавилова, 38; e-mail: sbs_michail@mail.ru.

стиц R как R^{-1}) существует зависимость концентрации частиц от интенсивности и геометрии поля, действующего в суспензии. Это обстоятельство может приводить к интересным особенностям взаимодействия двух электромагнитных пучков с различными частотами в таких средах. Например, достаточно (см. ниже) мощный опорный высокочастотный световой пучок с гауссовым профилем, распространяясь в разреженной суспензии практически без искажений, будет формировать в среде цилиндрическую область с высокой концентрацией рассеивающих частиц, зависящей от интенсивности, что приведет, при определенных ниже условиях, к френелевской дифракции зондирущего пучка с большей длиной волны на индуцированном диэлектрическом цилиндре. Очевидно, что дифракционные параметры будут определяться радиусом перетяжки опорного пучка, его интенсивностью и параметрами нанодисперсной среды. При этом ясно, что подобный процесс рассеяния света на свете будет иметь пороговый характер по интенсивности опорного пучка (см. оценки ниже).

Теория. Для выяснения основных физических особенностей динамики электромагнитных полей в описанных выше условиях в настоящей работе в определенной геометрии рассмотрено рассеяние квазиплоской монохроматической зондирующей электромагнитной волны частоты ω в жидкой диэлектрической нанодисперсной среде при одновременном распространении в ней интенсивного электромагнитного опорного пучка с гауссовым профилем и частотой $\Omega > \omega$. Получено радиальное распределение регистрируемой плотности электромагнитной энергии зондирующего пучка в зависимости от поляризуемости частиц взвеси, интенсивности опорного пучка, исходной концентрации примесных частиц.

Рассмотрим жидкую нанодисперсную среду, состоящую из диэлектрических шаров с диэлектрической проницаемостью ε (для выяснения основных физических особенностей во избежание громоздкости далее $|\varepsilon - 1| < 1$) и радиуса $R < \lambda_i$, где $\lambda_i -$ длины волн всех компонент поля, действующего в среде. Без существенного ограничения общности для простоты будем считать, что поляризуемость растворителя пренебрежимо мала. В среде распространяется вдоль оси у линейно поляризованный опорный пучок гауссова профиля с вектором напряженности $\vec{E} = \vec{E}_r \sin(\Omega t - Ky)e^{-\frac{x^2+z^2}{a^2}}$. Среда для поля опорного пучка разрежена:

$$\frac{2\pi\sqrt[3]{N(\vec{r})}}{K} < 1,\tag{1}$$

где $N(\vec{r})$ – плотность примесных частиц в поле.

При выполнении (1) гауссов пучок будет распространяться в среде практически без искажений, испытывая лишь небольшое ослабление из-за экстинкции.

Перпендикулярно опорному пучку (вдоль оси x) в среду заводится квазиплоская зондирующая электромагнитная волна с частотой $\omega < \Omega$, поляризованная вдоль оси y(ТЕ волна) с конечной апертурой (по оси z), превышающей радиус перетяжки a опорной волны и амплитудой $E_0 < E_r$.

Предполагается, что, как и в (1), выполнены условия разреженности

$$\frac{c2\pi\sqrt[3]{N_0}}{\omega} < 1,\tag{2}$$

где N_0 – первоначальная плотность примесных частиц в отсутствие электромагнитного поля.

Заметим, что при включении поля в области, занятой опорным пучком, условие разреженности (2), как будет показано ниже, может нарушаться.

Найдем поляризуемость дисперсной среды в условиях, когда расстояние между примесными частицами меньше длины волны электромагнитного поля. Вводя поляризуемость γ отдельной молекулы в примесной частице, для вектора поляризации $\vec{P}_{\rm mol}$ в наших условиях имеем:

$$\vec{P}_{\rm mol} = \gamma (\vec{E} + \vec{E}_{\rm int}).$$

Здесь \vec{E} – напряженность среднего поля в смеси, $\vec{E}_{\rm int}$ – напряженность внутреннего поля, создаваемого остальными частицами примеси.

Вектор поляризации \vec{P} единицы объема смеси тогда равен:

$$\vec{P} = N(\vec{r})nV_s\gamma(\vec{E} + \vec{E}_{\rm int}),\tag{3}$$

где V_s – объем наночастицы сферической формы, n – плотность молекул в наночастице. Заметим: $nV_s\gamma = \alpha_s$ – поляризуемость сферической наночастицы. Отметим также, что при малой поляризуемости суспензии наночастиц среднее макроскопическое поле \vec{E} совпадает с полем внешней волны, например E_0 .

Внутреннее поле, как обычно, можно записать в виде суммы дипольных полей дальних и ближних соседей [6]:

$$\vec{E}_{\rm int} = \left(\frac{4}{3}\pi + S\right)\vec{P}.\tag{4}$$

Величина S определяется конкретной пространственной конфигурацией ближайших к рассматриваемой молекуле соседей. Подставляя (4) в (3), получаем аналог соотношения Клаузиуса–Мосотти [6]

$$\vec{P} = \frac{N(\vec{r})\alpha_s}{1 - \left(\frac{4}{3}\pi + S\right)N(\vec{r})\alpha_s}\vec{E}_0.$$
(5)

Коэффициент при \vec{E}_0 есть искомая поляризуемость суспензии χ .

Распределение $N(\vec{r})$ при не слишком высокой интенсивности поля в среде (в нашем случае поля опорной волны) имеет Больцмановский вид. После разложения по малому параметру $\frac{\alpha_s E_r^2}{kT}$, определяющему отношение электромагнитной энергии, запасенной в наночастице, к её тепловой кинетической энергии, находим (см., например, [7]):

$$N(\vec{r}) = N(E) \left[1 + \frac{\alpha_s}{2kT} E_r^2 e^{-2\frac{x^2 + z^2}{a^2}} \right].$$
 (6)

Предэкспоненциальный множитель N(E) в (6) может быть найден из условия сохранения полного числа наночастиц суспензии в объеме кюветы. Интегрируя (6) по полному объему среды, получаем:

$$N(E) = N_0 \left(1 - \frac{\alpha_s E_r^2}{2kT} \frac{L\pi a^2}{2V} \right),\tag{7}$$

где N_0 – средняя плотность наночастиц в объеме суспензии в отсутствие поля, V – объем кюветы, $L\pi a^2$ – объем, занимаемый опорным пучком, L – длина кюветы по оси y.

На рис. 1 представлена зависимость N(E) для типичных параметров экспериментов [3, 4]. Видно, что в "плотной" среде наблюдается монотонный рост концентрации наночастиц суспензии при увеличении интенсивности опорного пучка.

Далее будем считать объем кюветы достаточно большим и пренебрегать вторым членом в правой части (7). Заметим, что подобная процедура определения $N(\vec{r})$ дает правильный результат для поляризуемости γ лишь в области плотной среды. Многие авторы (см., например [1, 2]) некорректно используют полученные таким образом значения плотности дисперсных частиц для нахождения полной поляризуемости среды в области прозрачности, где может быть формально введен коэффициент преломления среды, определяющий скорость распространения электромагнитной волны в попутном направлении, и который определяется сечением рассеяния света на отдельной частице для нулевого угла рассеяния.

Найдем теперь область, где смесь является "плотной" по отношению к зондирующей волне и можно вводить поляризуемость среды (5).

Искомая область определяется, очевидно, условием:

$$\sqrt[3]{N(\vec{r})}\lambda \ge 1, \quad \lambda = \frac{2\pi c}{\omega}$$

6

Рис. 1: Зависимость плотности наночастиц от интенсивности опорной волны E_r^2 для типичных параметров экспериментов [3, 4].

В силу малости параметра, использованного при выводе (6) ясно, что условие "плотности" среды может быть достигнуто лишь при малом отклонении начальной плотности смеси от критического значения $N_{\rm cr}$, отвечающего равенству:

$$\sqrt[3]{N_{\rm cr}}\lambda = 1.$$

Записывая $N(\vec{r}) = N_{\rm cr} + \Delta N$, $\frac{\Delta N}{N_{\rm cr}} < 1$ легко находим, что искомая область представляет собой цилиндр с осью, совпадающей с осью y и радиусом d, определяемым равенством:

$$\frac{\alpha_s E_r^2}{2kT} e^{-\frac{d^2}{a^2}} = \frac{1}{3} \frac{\Delta N}{N_{\rm cr}}.$$
(8)

Таким образом, задача рассеяния квазиплоской зондирующей волны на опорном пучке с гауссовым профилем сводится к задаче дифракции квазиплоской волны на диэлектрическом цилиндре.

Заметим, что в реальных условиях цилиндр является длинным L >> d), и во избежание громоздкости целесообразно перейти к двумерному случаю, полагая $L \to \infty$, считая поле зондирующей волны (его отличную от нуля *y*-компоненту E_y) зависящей от x, z. Кроме того, при $\frac{d}{a} < 1$, для выяснения основных особенностей рассеяния можно считать поляризуемость среды в цилиндре постоянной и отвечающей плотности (6) при x = z = 0.

Двумерное уравнение Максвелла для функции $E_y(x, z)$ при условии непрерывности функции и ее градиента по z на поверхности диэлектрического цилиндра сводится к волновому уравнению:

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial z^2} + \frac{\omega^2}{c^2} E_y = -4\pi \frac{\omega^2}{c^2} \chi \theta (d-\rho) E_y.$$
(9)

Здесь $\rho = \sqrt{x^2 + z^2}$, $\theta(d - \rho)$ – функция Хевисайда. При $\frac{\omega^2}{c^2}\chi < 1$ правую часть (9) можно рассматривать как возмущение. В борновском приближении (первого порядка по параметру $\frac{\omega^2}{c^2}\chi$) решение (8) можно представить в виде свертки:

$$E_y = E_y^{\text{ex}} - 4\pi \chi \frac{\omega^2}{c^2} \int G(x - x', z - z') E_y^{\text{ex}}(x', z') dx' dz'.$$
 (10)

Здесь E_y^{ex} – поле падающей волны, G(x - x', z - z') – двумерная функция Грина уравнения (9). Интегрирование ведется по основанию цилиндра $\rho \leq d$; $0 \leq \varphi \leq 2\pi$; φ – угол в полярной системе координат ρ , φ .

В полярной системе координат функция Грина:

$$G(\vec{r} - \vec{r}') = iH_0^{(2)} \left(\frac{\omega}{c}\sqrt{\rho^2 + \rho^{(2)} - 2\rho\rho'\cos(\varphi - \varphi')}\right) =$$
$$= \frac{i}{4}\sum_m H_m^{(2)} \left(\frac{\omega}{c}\rho\right) J_m \left(\frac{\omega}{c}\rho'\right) e^{im(\varphi - \varphi')}.$$
(11)

 $H_m^{(2)}\left(\frac{\omega}{c}\rho\right), J_m\left(\frac{\omega}{c}\rho'\right)$ функции Ханкеля второго рода и функции Бесселя, соответственно.

Разлагая падающую пробную волну, совпадающую с производящей функцией для J_m , в ряд по цилиндрическим функциям и подставляя разложение в интеграл (10) с учетом (11), получаем следующий результат.

Каждая парциальная волна в падающем пучке приводит к возникновению цилиндрической рассеянной волны с амплитудой, пропорциональной $H_m^{(2)}\left(\frac{\omega}{c}\rho\right)$, и с коэффициентом отражения r_m от цилиндра

$$r_m = i^{m+1} \pi \frac{\omega^2}{c^2} \chi \int J_m\left(\frac{\omega}{c}\rho'\right) J_m\left(\frac{\omega}{c}\rho'\cos\theta\right) \rho' d\rho' d\theta.$$
(12)

При $\frac{\omega}{c}d < 1$ основной вклад в рассеянное поле вносит парциальная волна с индексом m = 0. Интегрирование в (11) тогда выполняется элементарно и поле $E_y^{\rm sc}$ рассеянной волны будет иметь вид:

$$E_y^{\rm sc} = i\pi^2 \left(\frac{\omega}{c}d\right)^2 H_0\left(\frac{\omega}{c}\rho\right)\chi E_0.$$
(13)

Таким образом, рассеянное поле в сделанных приближениях имеет цилиндрическую симметрию с осью y. Амплитуда рассеянного поля определяется интенсивностью опорной волны E_r^2 . Эта зависимость возникает, с одной стороны, в результате зависимости поляризуемости смеси χ (см. (5)) от интенсивности опорного пучка E_r^2 и одновременной зависимости эффективного диаметра рассеивающего диэлектрического цилиндра d от E_r^2 (см. уравнение (8)). Квадрат модуля (13) дает регистрируемую плотность электромагнитной энергии рассеянного пучка. Наряду с полем рассеянного пучка будет возникать экстинкционное некогерентное поле опорного пучка от отдельных примесных частиц взвеси. Однако поля опорного и зондирующего пучков различаются частотой и могут быть легко отделены друг от друга.

Таким образом, в нанодисперсной среде возникает специфическое нелинейное коллективное фотон-фотонное взаимодействие, отвечающее переходу среды в интенсивном электромагнитном поле в оптически плотное состояние и которое, по своему физическому смыслу, можно назвать индуцированным когерентным взаимодействием лазерных полей. В случае отсутствия зондирующего пучка при достаточной интенсивности опорного пучка такое взаимодействие будет, очевидно, приводить к саморефракции поля опорного пучка, во многом аналогичной саморефракции поля при самофокусировке. В случае гауссовых пучков эффект будет сводиться к их самоканализации.

Заключение. Таким образом, суспензии наночастиц представляют собой интересный с общефизической точки зрения пример сплошной среды, дипольное излучение в которой определяется различным уровнем когерентности источников и зависит от концентрации примесных частиц. Это обстоятельство, как показано выше, для модели взаимодействия многочастотного поля с наночастицами может приводить к специфическому нелинейному когерентному фотон-фотонному взаимодействию в среде. Такое взаимодействие, в свою очередь, осуществляет управляемую пространственную перестройку электромагнитных пучков в суспензиях, а также реализует контролируемое формирование пространственного профиля распределения примесных частиц в среде.

Данная работа была частично поддержана грантами РФФИ 18-52-16016, 19-02-00013, 20-02-00172.

ЛИТЕРАТУРА

- A. Ashkin, J. M. Dziedic, T. Yamane, Nature **330**(24/31), 769 (1987). doi.org/10.1038/330769a0.
- [2] А. А. Афанасьев, Л. С. Гайда, Д. В. Гузатов и др., Оптика и спектроскопия 120(1), 153 (2016). DOI: 10.7868/S0030403415120028.
- [3] A. F. Bunkin, M. A. Davydov, V. G. Mikhalevich, et al., Physics of Wave Phenomena 26(1), 16 (2018). doi.org/10.3103/S1541308X1801003X.
- [4] A. F. Bunkin, M. A. Davydov, S. M. Pershin, et al., Physics of Wave Phenomena 7(3), 187 (2019). DOI: 10.3103/S1541308X19030038.
- [5] С. М. Першин, А. Ф. Бункин, М. А. Давыдов и др., Письма в ЖЭТФ 112(7-8), 437 (2020). DOI: 10.31857/s1234567820190027.
- [6] Дж. Джексон, Классическая электродинамика (М., Мир, 1965), 702 стр.
- [7] А. Ф. Бункин, В. Г. Михалевич, В. Н. Стрельцов, Изв. РАН 85(6), (2021). DOI: 10.31857/S0367676521060077.

Поступила в редакцию 31 мая 2021 г.

После доработки 5 июля 2021 г.

Принята к публикации 6 июля 2021 г.