УДК 537.591.15

ВЗАИМОДЕЙСТВИЯ НЕЙТРАЛЬНЫХ ЧАСТИЦ С ЭНЕРГИЕЙ > 7 ТЭВ В СТРАТОСФЕРНЫХ РЕНТГЕНОЭМУЛЬСИОННЫХ КАМЕРАХ

И.С. Заярная, Т.А. Ирхина

В публикации сообщается о взаимодействиях высокоэнергичных космических нейтральных частиц с веществом двухсторонних ядерно-эмульсионных пленок, зарегистрированных в рентгеноэмульсионных камерах (РЭК) RUNJOB-IIIB, XI-A, B, экспонировавшихся в стратосфере на уровне ≈ 10 г/см², в течение 6– 7 суток в российско-японском баллонном эксперименте RUNJOB. Обсуждается вероятность данных взаимодействий по расчетам, проведенным с использованием моделей нуклон-ядерных и ядро-ядерных взаимодействий MCO и QGSJET (CORSIKA, версия 5.20).

Ключевые слова: космические лучи, нейтральные частицы, стратосферная рентгеноэмульсионная камера.

Введение. В российско-японском баллонном эксперименте RUNJOB, проводившемся с 1995 г. по 1999 г. [1, 2], исследовались состав и спектры галактических частиц в энергетической области $10^{12}-10^{15}$ эВ, близкой к "излому" в спектре космических лучей, методом стратосферных рентген-эмульсионных камер. Преимуществом данного метода является использование в качестве детекторов двухсторонних ядерно-эмульсионных пленок с высоким зарядовым и пространственным разрешением, что позволяет надежно исследовать состав первичного космического излучения, который до сих пор является целью исследования как в экспериментах, использующих наземные установки, так и в так называемых "прямых" экспериментах в стратосфере и в околоземном космическом пространстве [3, 4]. В эксперименте RUNJOB в результирующий спектр протонной компоненты галактических частиц вошли 360 взаимодействий [5], идентифицированных как нуклон-ядерные. При поиске первичных частиц обнаружилось, что в этих взаимодействиях, примерно в половине событий, отсутствует кандидат на трек однозарядной

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: zayar@sci.lebedev.ru.

релятивистской частицы [1]. Предполагалось, что причиной этого может быть большой фон частиц, набираемый эмульсией за длительное время экспозиции РЭК, а также вторичные нейтроны, образуемые первичными галактическими частицами в остаточной атмосфере на уровне экспозиции камеры. Однако детальный анализ этих факторов при повторной обработке данных по камерам экспозиций RUNJOB'96,97,99 не объяснил отсутствия большого количества треков первичных частиц [6–8]. Следует отметить, что при повторной обработке использовался также новый метод поиска и прослеживания частиц в ядерно-эмульсионных пленках, который был разработан с целью увеличения статистики анализируемых событий за счет нуклон-ядерных взаимодействий с меньшей энергией, не вошедших в окончательный спектр протонов эксперимента RUNJOB. В работе [9] сообщалось о регистрации редкого взаимодействия нейтральной частицы с энергией E₀ > 15 ТэВ в ядерно-эмульсионной пленке РЭК RUNJOB-XIA экспозиции 1999 года. Это взаимодействие было редким потому, что первичная частица – нейтральная, кроме того, вершина взаимодействия находится в основе двухсторонней ядерной пленки. По оценке [9] число таких взаимодействий по всем данным RUNJOB pprox 0.95 события. При дальнейшей обработке экспериментального материала обнаружены еще взаимодействия нейтральных частиц в основе и верхнем эмульсионном слое ядерных пленок РЭК RUNJOB-XIB и РЭК RUNJOB-IIIB, с энергиями $E_0 = 85.16$ и $E_0 = 7.12$ ТэВ, соответственно. Данные события могут указывать на поток нейтральных частиц на уровне экспонирования РЭК (~10 г/см²), значительно превышающий расчетный.

Экспериментальные данные. При неупругом взаимодействии космических частиц с веществом рентген-эмульсионной камеры образуются вторичные заряженные и нейтральные частицы (в основном, π^{\pm} -, π^{0} -мезоны), регистрируемые в виде треков в двухсторонних ядерно-эмульсионных пленках и пятен почернения в рентгеновских пленках от электрон-фотонных каскадов, образованных π^{0} -мезонами. Представленные в данной работе взаимодействия нейтральных частиц с веществом ядерно-эмульсионных пленок зарегистрированы в РЭК RUNJOB-IIIB, XI-A, B, экспонировавшихся в атмосфере на глубине ~10 г/см² в течение ~6÷7 суток в 1996, 1999 годах, соответственно. Рентгенэмульсионные камеры эксперимента RUNJOB имеют сложную структуру (см. рис. 1) и состоят из зарядового, мишенного, пространственного и калориметрического блоков. В состав каждой РЭК входит до сорока ядерно-эмульсионных пленок, каждая площадью 40×50 см², расположенных по всей глубине камер и лежащих под железными, пластиковыми, свинцовыми пластинами различных блоков. Зарядовое разрешение эмульсий

Рис. 1: Схема взаимодействия XIB-2 в рентгеноэмульсионной камере RUNJOBXI-B.

составляет 0.2е и 1е для группы легких и тяжелых ядер, соответственно.

Одним из критериев отбора событий (взаимодействий) для исследования состава и спектров галактических частиц в эксперименте RUNJOB является энергетический: по суммарной энергии, выделившейся в нейтральную компоненту вторичных частиц (ΣE_{γ}). Эта энергия определяется по фотометрическому методу: по измерениям почернений (D) пятен на рентгеновских пленках, образованных частицами электромагнитного каскада, инициированного вторичными π^0 -мезонами, строятся зависимости почернений от глубины проникновения каскада D(t) в калориметре РЭК; экспериментальные зависимости D(t) аппроксимируются расчетными каскадными кривыми, по максимуму которых определяется суммарная энергия электромагнитного каскада ΣE_{γ} [1]. Переход к энергии первичной частицы E_0 осуществляется по формуле $E_0 = C_{\gamma} \cdot \Sigma E_{\gamma}$, где C_{γ} – фактор конверсии, рассчитанный с использованием программы моделирования FRITIOF [1].

Характеристики описываемых в работе взаимодействий нейтральных частиц представлены в табл. 1.

Таблица 1

$\operatorname{tg}(\theta)$	$\Sigma E_{\gamma},$	№ ядерной пленки		Длина траектории	
	ТэВ	входа первичной	с вершиной	частицы (с учетом угла	
		частицы в РЭК	взаимодействия	падения) до вершины	
				взаимодействия в РЭК	
				в единицах:	
				λ_p	cascade
					units
1.26	1.83	P (1)	C(20)	0.32	3.16
2.17	4.11	S(25)	C (35)	0.3	7.93
3.08	20.77	T (20)	S(26)	0.03	0.11
	tg(θ) 1.26 2.17 3.08	tg(θ) Σ E_{γ} , T \ni B 1.26 1.26 1.83 2.17 4.11 3.08 20.77	tg(θ) ΣEγ, № ядерно TэB входа первичной частицы в РЭК 1.26 1.83 2.17 4.11 S (25) 3.08 20.77	tg(θ) ΣE _γ , № ядерної пленки TэВ входа первичной частицы в РЭК с вершиной взаимодействия 1.26 1.83 P (1) C (20) 2.17 4.11 S (25) C (35) 3.08 20.77 T (20) S (26)	tg(θ) ΣE_{γ} , \mathbb{N}° ядерної пленки $\mathcal{I}_{\mathcal{I}}$ TэВ входа первичной с вершиной части частицы в РЭК взаимодействия паде 1.26 1.83 P (1) C (20) 0.32 2.17 4.11 S (25) C (35) 0.3 3.08 20.77 T (20) S (26) 0.03

Характеристики взаимодействий нейтральных частиц с веществом ядерно-эмульсионных пленок

Вершины экспериментальных событий, зарегистрированных в РЭК экспозиции RUNJOB'99, находятся в основах ядерно-эмульсионных пленок, поэтому для поиска трека первичной частицы не требовалось применять методики прослеживания треков в камере, учитывающие сдвиги и повороты пленок в разных плоскостях. Поиск трека первичной частицы в этих взаимодействиях на верхнем эмульсионном слое пленки осуществлялся при помощи изменения фокусного расстояния оптического микроскопа. Отсутствие трека в верхнем эмульсионном слое, где нет дисторсии и дефектов эмульсии, однозначно говорит о нейтральном заряде первичной частицы во взаимодействии. Для нахождения трека первичной частицы в событии из камеры РЭК RUNJOB-IIIB использовалось два различных независимых метода поиска и продления треков частиц в РЭК, поскольку взаимодействие произошло почти на границе эмульсионного верхнего слоя ядерной пленки. Предсказания координат трека первичной частицы совпали с точностью ~10 мкм, и в области поиска первичный трек так же отсутствовал. Почти все данные взаимодействия (исключение событие № 349) удовлетворяют следующим условиям отбора событий в эксперименте RUNJOB:

1. Суммарная энергия, выделившаяся в нейтральную компоненту вторичных частиц (ΣE_{γ}) , превышает некоторое пороговое значение: $\Sigma E_{\gamma} \ge 1$ ТэВ для камер экспозиции RUNJOB'96, $\Sigma E_{\gamma} \ge 5$ ТэВ для камер RUNJOB'99.

2. Зенитный угол первичной частицы $tg(\theta) \leq 5$.

3. Траектория первичной частицы проходит через самую нижнюю эмульсионную пленку в калориметре.

4. Глубина камеры в каскадных единицах (t) от вершины взаимодействия до самой нижней пленки калориметра не меньше 4 t.

5. Вершина взаимодействия находится внутри РЭК.

Как видно из табл. 1, взаимодействия имеют зенитный угол падения на установку в интервале $1.2 \le tg(\theta) \le 5$, а суммарная энергия электромагнитной компоненты вторичных частиц во взаимодействии № 349 из РЭК XIA немного меньше порога отбора.

Обсуждение. Нейтральные частицы, инициировавшие данные взаимодействия, могут быть нейтронами, как наиболее вероятные вторичные частицы, образованные в результате взаимодействий первичных галактических частиц с веществом остаточной атмосферы над уровнем экспонирования РЭК. По расчетам с использованием моделей нуклон-ядерных и ядро-ядерных взаимодействий MC0 [10] и QGSJET (CORSIKA, версия 5.20), относительный вклад вторичных нейтронов в общий поток протонов и заряженных вторичных частиц на уровне экспонирования РЭК в интервале углов рассматриваемых событий с энергиями первичных частиц во взаимодействиях $E_0 > 20$ ТэВ не превышает 11%. Энергии первичных частиц во взаимодействиях № 93 из РЭК RUNJOB-3В и № 349 из РЭК RUNJOB XI-А несколько меньше граничной энергии, используемой в расчетах, но поскольку спектры первичных протонов и вторичных частиц в граничной области почти параллельны [10], то относительное количество нейтральных частиц в области энергий, близкой к указанной, не сильно изменится. Вероятность взаимодействий частиц, падающих на установку, с веществом ядерных пленок на порядок меньше, чем с веществом пластин мишени и калориметра, поэтому в малом расчетном относительном потоке нейтральных частиц с большими углами, падающих на установку, примерно 1% частиц будет взаимодействовать в ядерно-эмульсионных пленках. В рентгеноэмульсионных камерах RUNJOB-3B и XI-A, B в интервале углов $1.2 \leq tg(\theta) \leq 5$, зарегистрировано 32 и 17 взаимодействий, идентифицированных как нуклон-ядерные, с энергией первичной частицы $E_0 > 7$ ТэВ и $E_0 > 12$ ТэВ, соответственно. По оценке не более 4-х из РЭК RUNJOB-3В и 2-х событий из РЭК XI-А, В должны быть взаимодействиями нейтронов. Если учесть, что взаимодействия происходят с веществом ядерных эмульсий, то количество таких взаимодействий в камерах должно быть на порядок меньше. Однако в эксперименте в каждой из трех камер найдены по одному из таких взаимодействий, что возможно указывает на поток нейтральных частиц, падающий на установку, больший, чем расчетный.

По данным эксперимента RUNJOB в 50% взаимодействий, идентифицированных как нуклон-ядерные, трек однозарядной частицы не был обнаружен, что также может указывать на больший, чем в расчетах, поток нейтральных частиц.

Заключение. В результате обработки экспериментальных данных новым методом поиска и продления треков галактических частиц в РЭК среди взаимодействий, идентифицированных как нуклон-ядерные, с энергией первичной частицы $E_0 > 7$ ТэВ в интервале зенитных углов $1.2 \leq tg(\theta) \leq 5$ наблюдаются взаимодействия нейтральных частиц в основе и верхнем слое эмульсии двухсторонних ядерно-эмульсионных пленок экспозиций РЭК RUNJOB-XI-A, В и RUNJOB-3B, соответственно. По оценке с использованием расчетов, проведенных по данным эксперимента, количество таких взаимодействий должно быть меньше на порядок. Кроме того, в эксперименте RUNJOB много событий (\approx 50%) идентифицированных, как нуклон-ядерные взаимодействия, в которых трек первичной частицы не обнаружен. Для объяснения возникшего разногласия расчетов с экспериментом требуется дальнейший анализ данных, возможно с использованием другой зависимости сечений нуклон-ядерных взаимодействий от энергии налетающей частицы, а также другого коэффициента перезарядки нуклонов.

ЛИТЕРАТУРА

- A. V. Apanasenko, V. A. Sukhadolskaya, V. A. Derbina, et al., Astropart. Phys. 16, 13 (2001). DOI: 10.1016/S0927-6505(00)00163-8.
- [2] V. A. Derbina, V. I. Galkin, M. Hareyama, et al., Astrophysical Journal, No. 1, 41 (2005). DOI: 10.1086/432715.
- [3] Y. S. Yoon, T. Anderson, A. Barrau, et al., ApJ 839(5), 1 (2017). DOI: 10.3847/1538-4357aa68e4.
- [4] A. Turundaevskiy, V. Grebenyuk, D. Karmanov, et al., Phys. Atom. Nuclei 82(6), 920 (2019). DOI: 10.1134/S1063778819660487.
- [5] M. Hareyama et al. (RUNJOB Collab.), In: Proceedings of the 29 ICRC, Pune, 2005, V3:OG1.1, p. 17.
- [6] И. С. Заярная, Ядерная Физика **71**(2), 280 (2008). DOI: 10.1134/S1063778808020075.
- [7] I. S. Zayarnaya, T. A. Irkhina, In: Proceedings of ISVHECRI, Moscow, 2017; EPJWeb Conf. 145, 19011 (2017).
- [8] И. С. Заярная, Краткие сообщения по физике ФИАН 40(11), 29 (2013). DOI: 10.3103/S1068335613110043.

- [9] И. С. Заярная, Т. А. Ирхина, Краткие сообщения по физике ФИАН 46(5), 3 (2019).
 DOI: 10.3103/S1068335619050014.
- [10] В. А. Березовская, В. И. Галкин, Р. А. Мухамедшин и др., Препринт НИИЯФ МГУ-97-43/494 (Москва, 1997).

Поступила в редакцию 13 июля 2021 г.

После доработки 3 октября 2021 г.

Принята к публикации 4 октября 2021 г.