УДК 53.043

ДВИЖЕНИЕ АТОМОВ И МОЛЕКУЛ ВНУТРИ ФУЛЛЕРЕНА С₆₀

М. А. Половников, А. И. Чичинин

Методом функционала электронной плотности рассчитаны поверхности потенциальной энергии $U(R, \theta, \phi)$ в системах $M+C_{60}$ (M=He, Ne, Ar, HF), где молекулы Mнаходятся внутри молекулы фуллерена C_{60} . Рассчитаны частоты трёхмерных колебаний в этих системах (259, 175, 340 и 109 см⁻¹, соответственно). Решено уравнение Шрёдингера для движения молекулы HF внутри молекулы C_{60} . Обнаружено колебательно-вращательное взаимодействие Кориолиса, когда два вида вращательных моментов (L и l, где первый – это движение внутри C_{60} , а последний – это вращение HF) складываются в один суммарный момент, а эти два движения смешиваются.

Ключевые слова: фуллерен C₆₀, молекулы внутри фуллерена, колебательновращательное взаимодействие Кориолиса, квантово-химические вычисления.

Введение. Данную работу стимулировала дискуссия, посвящённая быстрой ортопара конверсии молекул H₂O, находящихся внутри фуллерена C₆₀ (будет обозначаться как H₂O+C₆₀) даже при криогенных температурах [1–4]. Недостаток сведений о движении молекул внутри "клетки" (т. е. C₆₀) очень затрудняет эту дискуссию. Хотя нашей конечной целью является система H₂O+C₆₀, мы начали с систем M+C₆₀, где M=He, Ne, Ar и HF. То есть мы изучаем вращательно-колебательное движение, наращивая количество степеней свободы, часто выбирая молекулы массой, близкой к массе H₂O. Цель данной работы – научиться исследовать колебательно-вращательные взаимодействия в системах M+C₆₀, которые, как мы предполагаем, смогут объяснить и быструю орто–пара конверсию молекул H₂O внутри C₆₀, и расщепление вращательных термов этих молекул, которое было обнаружено (но не интерпретировано) в работе [1].

Институт химической кинетики и горения СО РАН, 630090 Россия, Новосибирск, ул. Институтская, 3; e-mail: Chichinin@kinetics.nsc.ru.

Эта задача является частью более общей проблемы вращения водородсодержащих молекул внутри фуллеренов, нанотрубок [5–7] или даже просто на подходящей поверхности [8]. Интерес к этой теме обычно связан с проблемой разделения изотопов (обычно H₂ и D₂). Например, при прохождении этими молекулами нанотрубок.

Рис. 1: Молекула С₆₀.

Методика. Общие сведения про фуллерен C_{60} . Молекула C_{60} содержит 12 пятиугольников и 20 шестиугольников, симметрия икосаэдра I_h (см. рис. 1). Диаметр молекулы 7.1 Å, длины связей С–С и С=С равны 1.46 Å и 1.40 Å, соответственно. При T < 260 K фуллерен образует гранеконцентрированную кубическую решётку Ра $\bar{3}$, в которой атомы расположены в центрах граней и вершинах простой кубической решётки. При T > 260 K каждая молекула C_{60} свободно вращается, не нарушая структуру решётки. При T < 100 K она перестает вращаться на времени регистрации методом ЯМР (т. е. несколько часов) [9], что даёт нам право не учитывать это вращение.

Механизм взаимодействия фуллерена с молекулами внутри – это электростатическое взаимодействие. Обычно это потенциал Леннард–Джонса [1]. Т.е. эти молекулы и "клетка" не образуют химической связи (никакого обмена электронами), при этом "клетка" действует как пружина, толкающая молекулу к центру "клетки".

В данной работе атомы "клетки" неподвижны. Известно, что нагрев "клетки" до 300 К приводит к возникновению хаотичности в движении атомов Ne внутри C₆₀ [10], но мы подразумеваем низкие температуры.

Вычисления. Потенциальные энергии взаимодействия между молекулами М и C₆₀ в системах M+C₆₀ вычислялись квантово-химически с помощью программы Orca v. 4.2.1 [11] методом функционала плотности. Оптимизации геометрии не было, только расчёт энергий. Основная команда имеет вид: B3LYP D3BJ TZV def2/J, где D3BJ – дисперсионная поправка (Becke–Johnson), учитывающая, в частности, слагаемое C₆ в потенциале Леннарда–Джонсона; TVZ – валентно–расщеплённый базис (triple-zeta) с новыми поляризационными функциями и def2/J – вспомогательный базис. Все вычисления предполагали очень маленькие отклонения системы от минимума потенциальной энергии, обычно не более 1000 см⁻¹.

Рис. 2: Слева: белыми кружками обозначены конечные точки разных траекторий. Справа: сферические системы координат (R, θ, ϕ) , (θ', ϕ') и (θ_r, ϕ_r) . Для первых двух главные оси зафиксированы, в последнем случае ось системы – это вектор gG, где g – центр тяжести молекулы HF и G – центр молекулы C_{60} .

Траектории полётов внутри C_{60} . Для всех систем выполнялись вычисления вдоль нескольких разных траекторий. В случае молекулы НF речь идет о полёте центра тяжести молекулы. Каждая траектория начинается в центре "клетки" G и заканчивается в определённой точке на поверхности сферы. Точки обозначены j, k, m, n, p и r (см. рис. 2). Например, j — это полёт из центра G на атом углерода, k и m — это полёты в центр пятиугольника и шестиугольника, соответственно; n и p — полёты в середину длинной и короткой С–С связи, соответственно; и r — в середину отрезка m - j. Положение молекулы (атома) характеризуется траекторией и расстоянием *R* от центра "клетки" G до центра тяжести молекулы.

Результаты. Движение He, Ne и Ar внутри C₆₀. Для всех трёх атомов вычислены потенциальные энергии вдоль нескольких траекторий t (t = j, k, ...). Результаты квантово-химических расчётов подгонялись выражением $U_t(R) = U_0 + a_2 R^2 + a_4 R^4 + a_6 R^6$. Оказалось, что для низких температр значительной разницы между траекториями нет. Часто в качестве средней траектории бралась k, ведущая в центр пятиугольника. Можно показать, что "неровности" поверхности "клетки" имеют оси симметрии пятого порядка, поэтому неровности влияют только на состояния с вращательным числом L, кратным пяти, и поэтому мы их усреднили.

В результате "колебательная" (так мы очень условно называем это движение) волновая функция аналогична электронной волновой функции атома водорода, $\Psi(R, \theta, \phi) = R_{nL}(R) Y_{Lm}(\theta, \phi)$, отличаясь только радиальной функцией $R_{nL}(R)$ $(n = 0, 1, ..., L = 0, 1, ..., |M| \le L$.). Радиальное уравнение Шрёдингера имеет вид:

$$\left[\frac{d^2}{dR^2} + \frac{2M}{\hbar^2} \left\{ E_{nl} - \tilde{U}_{tL}(R) \right\} \right] R R_{nL}(R) = 0, \quad \tilde{U}_{tL} \equiv U_t(R) + \frac{\hbar^2 L(L+1)}{2MR^2}, \tag{1}$$

где M — это приведённая масса C_{60} –Ng, $M \equiv M(C_{60})M(Ng)/[M(C_{60}) + M(Ng)]$ (Ng=He, Ne, Ar, HF). Оно решалось как напрямую, так и приблизительно с помощью квазиклассического метода ВКБ (Вентцеля–Крамерса–Бриллюэна) $\int p(R) dR = \int_{R_1}^{R_2} \sqrt{2M(E_{nl} - \tilde{U}_{tL}(R))} dR = (n + 1/2) \pi \hbar$, где R_1 и R_2 — классические точки поворота, а p(R) — радиальный импульс. Аналитическое решение для гармонического потенциала $U_t(R) = K_2 R^2/2$ хорошо известно: $R_{nL}(\rho) = \rho^L e^{-\rho^2/2} L_n^{L+1/2}(\rho^2)$, где $\rho = R/R_0$ $(R_0 \equiv \sqrt{\hbar\omega/K_2})$, число n равно числу узлов функции Лагерра $L_n^{L+1/2}$, а энергия равна $E = (2n + L + 3/2)\hbar\omega$, где $\omega^2 = K_2/M$.

Некоторые результаты вычислений даны в табл. 1. Подразумевается усреднённая траектория, которую можно упрощённо считать совпадающей с $U_k(R)$. Все кривые $U_t(R)$ находятся между крайними кривыми $U_j(R)$ и $U_m(R)$. Данные табл. 1 очень хорошо (с точностью $\leq 4 \text{ см}^{-1}$ для n < 4, L < 3) подгоняются выражением $E_{nL} = \hbar\omega[2n + (1 + \delta)L + 3/2]$. Заметим, что если в потенциальную энергию $\tilde{U}_t(R) = K_2 R^2/2$ (см. выр. (1)), добавить малое возмущение $K_3 R^3$, то поправка δ легко вычисляется: $\delta/[2K_3R_0/(\sqrt{\pi}K_2)] = 1, 4, 8, 3/2, 15/8$ для $nl = 00, 01, 02, 10, 20, \dots$ Т. е. отклонение величины δ от нуля характеризует отклонение потенциала от параболы.

Таблица 1

		${ m He+C_{60}}$			Ne+C ₆₀			$ m Ar+C_{60}$		
n		L = 0	L = 1	L=2	L = 0	L = 1	L=2	L = 0	L = 1	L=2
0	Ш	192.39	324.1	453.2	130.9	266.8	391.7	253.0	424.4	595.4
	ВКБ	126.19	313.1	446.3	114.6	210.5	300.5	167.3	409.7	586.8
	ΔR	(0-	(0.17–	(0.26 -	(0-	(0.1 -	(0.14 -	(0-	(0.05 -	(0.07 -
		0.35)	0.53)	0.63)	0.17)	0.29)	0.34)	0.10)	0.15)	0.18)
1	Ш	449.59	576.7	705.0	304.8	440.5	565.7	595.1	765.6	935.8
	ВКБ	385.89	564.8	697.09	301.7	384.0	474.0	509.6	750.8	927.0
	ΔR	(0-	(0.12–	(0.20 -	(0-	(0.07 -	(0.11 -	(0-	(0.03–	(0.055 -
		0.63)	0.76)	0.83)	0.28)	0.41)	0.45)	0.18)	0.21)	0.23)
	E_{nL} :	$\hbar\omega = 128.3, \delta = 0.016$			$\hbar\omega = 87.6, \delta = 0.498$			$\hbar\omega = 170.0, \delta = 0.000$		

Начальные энергии $Ng+C_{60}$ (Ng=He, Ne, Ar) в см⁻¹. Ш и ВКБ означает Шрёдингер и ВКБ, соответственно, ΔR – интервал доступных расстояний в Å

Потенциальные энергии HF внутри C_{60} . Вычислены энергии $U_t(R, \theta_r, \phi_r)$ вдоль трёх траекторий (t = j, k, m). Для каждого расстояния R вычислялись энергии для семи значений угла θ_r (0°, 30°, ... 180°). Для каждого значения θ_r (кроме 0° и 180°) варьировался ещё угол ϕ_r , чтобы усреднить все "неровности", происходящие от неидеальности

Рис. 3: Зависимости $U_j(R, \theta_r)$, полученные усреднением исходных данных по углам ϕ_r .

поверхности фуллерена. После усреднения по углам ϕ_r остаются зависимости $U_t(R, \theta_r)$ (см. рис. 3).

При $R \to 0$ энергия минимальна при малых θ_r . При больших R, наоборот, минимум при $\theta_r \to 180^\circ$, потому что атом Н упирается в стенку "клетки".

Потенциальные энергии $U_t(R, \theta_r)$ подгонялась выражением $W_R(R) + W_{\theta_r}(R, \theta_r)$, где

$$W_{\theta_r}(R,\theta_r) = a(R)\,\cos\theta_r + b(R)\,\sin\theta_r + c(R)\,\cos2\theta_r + d(R)\,\sin2\theta_r.$$
(2)

Известно, что период свободного вращения HF равен 0.8 пс, а период HF–C₆₀ колебания в 50 раз меньше (16 фс). Но частота колебания ω_{θ} в минимуме кривых лишь немного меньше $\omega_{\rm HF}$. Поэтому эти два вида движения могут быть синхронизованы, что и является причиной довольно большого колебательно-вращательного взаимодействия.

Эффект Кориолиса в системе $HF+C_{60}$. Уравнение Шрёдингера решалось следующим образом. Гамильтониан системы $HF+C_{60}$ имеет вид $H = H_{kin} + H_{rot} + W_R + W_{\theta_r}$, где H_{kin} и H_{rot} — кинетическая и вращательная энергии молекулы HF, соответственно.

На первом этапе не учитываем W_{θ_r} . В этом случае имеются два несвязанных между собой движения. Слагаемое $H_{\rm rot}$ даёт вращательные энергии свободной молекулы HF $E_l = B_0 l(l+1) - D_0 l^2 (l+1)^2$, где $B_0 = 20.559$ и $D_0 = 0.00211$ см⁻¹, а волновые функции имеют вид $Y_{lm}(\theta', \phi')$. Слагаемые $H_{\rm kin}$ и $W_R(R)$ соответствуют уже решённой задаче о колебаниях атомов внутри C₆₀. Эта задача решается и даёт колебательные энергии E_{nL} и соответствующие им колебательные волновые функции $R_{nL}(R) Y_{LM}(\theta, \phi)$.

На втором этапе мы строим матрицу Гамильтона в базисе волновых функций $\Psi_{nLMlm} = R_{nL}(R) Y_{LM}(\theta, \phi) Y_{lm}(\theta', \phi')$. Наряду с энергиями на диагонали матрицы $E_{nL} + E_l$ возникают матричные элементы оператора W_{θ_r} . Например, матричный элемент $M_a \equiv \langle a \rangle \tilde{n} \tilde{L} \tilde{M} \tilde{l} \tilde{m} a(R) \cos \theta_r nLMlm$ слагаемого $a(R) \cos \theta_r$ из ур. (2) имеет вид

$$M_{a} = \langle a \rangle \int Y_{\tilde{L}\tilde{M}}^{*}(\theta,\phi) Y_{\tilde{l}\tilde{m}}^{*}(\theta',\phi') \cos\theta_{r} Y_{LM}(\theta,\phi) Y_{lm}(\theta',\phi') \sin\theta \sin\theta' d\theta \, d\theta' \, d\phi \, d\phi', \quad (3)$$

где $\langle a \rangle \equiv \int R_{\tilde{n}\tilde{L}}(R)a(R)R_{nL}(R)\,dR.$

Вычисление матричных элементов (3) облегчается правилами отбора, которые нетрудно вывести. Например, эти элементы не равны нулю только тогда, когда $\Delta L + \Delta l = 0$ и $\Delta M + \Delta m = 0$ ($\Delta L = \tilde{L} - L$, $\Delta l = \tilde{l} - l$, и т. д.) При этом слагаемые с a(R) и d(R) из выражения (2) дают вклад, только если числа ΔL и Δl нечётны, а слагаемые с b(R) и c(R) — когда они оба чётны. Эти правила возникают вследствие неизменности матричного элемента при произвольном повороте и при инверсии обоих наборов сферических координат или только одного из них.

Рис. 4: Первые несколько колебательно-вращательных состояний системы $HF+C_{60}$.

Результат диагонализации Гамильтониана представлен на рис. 4. Интересной чертой этой диаграммы является расщепление вырожденных уровней с L > 0 и l > 0. Два вращательных момента взаимодействуют между собой, образуя состояния, характеризуемые суммарным вращательным моментом $\mathcal{L} = L + l$ и проекцией этого суммарного момента. Это взаимодействие можно назвать Кориолисовым, по аналогии с известным в спектроскопии взаимодействием внутри молекул между вращательным моментом всей молекулы и её колебательным вращательным моментом. Диаграмма сильно усложняется большим количеством резонансов и сильным перемешиванием состояний с одинаковыми \mathcal{L} . Резонансы возникают из-за приблизительных равенств $E(n, L, l) \approx E(n - 1, L + 2, l) E(n, L, l = 0) \approx E(n, L - 1, l = 2).$

Заключение. В системах $M + C_{60}$ (M = He, Ne, Ar, HF) методом функционала электронной плотности рассчитаны поверхности потенциальной энергии, потом решением уравнения Шрёдингера найдены частоты колебаний. Для системы HF + C_{60} обнаружено колебательно-вращательное взаимодействие Кориолиса, когда два вида вращательных моментов (вращение HF и движение HF относительно C_{60}) складываются в один суммарный момент, а эти два движения смешиваются. Предполагается, что такое смешение окажется ответственным за быструю орто–пара конверсию в системе ${
m H_2O}$ + ${
m C_{60}}.$

ЛИТЕРАТУРА

- K. S. K. Goh, M. Jimenez-Ruiz, M. R. Johnson, et al., Phys. Chem. Chem. Phys. 16(39), 21330 (2014). DOI: 10.1039/C4CP03272A.
- [2] C. Beduz, M. Carravetta, J. Y. Chen, Proc. Natl. Acad. Sci. USA, 109(32), 12894 (2012). DOI: 10.1073/pnas.1210790109.
- [3] B. Meier, K. Kouril, C. Bengs, et al., Phys. Rev. Lett. 120, 266001 (2018). DOI: 10.1103/PhysRevLett.120.266001.
- [4] S. Mamone, M. Concistrè, E. Carignani, et al., J. Chem. Phys. 140, 194306 (2014).
 DOI: 10.1063/1.4873343.
- [5] T. Lu, E. Goldfield, S. K. Gray, J. Phys. Chem. B 107(47), 12989 (2003). DOI: 10.1021/jp030601n.
- [6] B. C. Hathorn, B. G. Sumpter, D. W. Noid, Phys. Rev. A 64(2), 022903-10 (2001).
 DOI: 10.1103/PhysRevA.64.022903.
- [7] G. Garberoglio, M. M. DeKlavon, J. K. Johnson, J. Phys. Chem. B 110(4), 1733 (2006). DOI: 10.1021/jp054511p.
- [8] T. B. MacRury, J. R. Sams, Mol. Phys. 19(3), 337 (1970). DOI: 10.1080/ 00268977000101351.
- [9] W. Schranz, A. Fuith, P. Dolinar, et al., Phys. Rev. Lett. 71, 1561 (1993). DOI: 10.1103/PhysRevLett.71.1561.
- [10] A. L. R. Bug, A. Wilson, G. A. Voth, J. Phys. Chem. 96(20), 7864 (1992). DOI: 10.1021/j100199a007.
- [11] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 152(22), 224108 (1992). DOI: 10.1063/5.0004608.

Поступила в редакцию 26 сентября 2022 г.

После доработки 28 сентября 2022 г.

Принята к публикации 29 ноября 2022 г.