УДК 53.083

ПРОСТАЯ МОДЕЛЬ РАСПРЕДЕЛЕНИЯ ИНДУКЦИОННЫХ ТОКОВ В ТОНКОЙ СВЕРХПРОВОДЯЩЕЙ ПЛЁНКЕ

С. Ю. Гаврилкин, А. Ю. Цветков

В работе представлена простая модель для расчёта распределения индуцированных токов в тонкой сверхпроводящей плёнке под действием локального переменного магнитного поля, создаваемого измерительной катушкой. Получено пространственное распределение пиковых значений плотности тока в образце, а также рассмотрен спектральный состав сигнала отклика в зависимости от амплитуды тока возбуждения. Показана применимость модели к реальным образцам.

Ключевые слова: тонкие сверхпроводящие плёнки, индукционная методика, многовитковая модель, нелинейный отклик.

Введение. Бесконтактные (неразрушающие) индукционные методики, основанные на регистрации отклика образца на возбуждение в нём кольцевого тока с помощью близкорасположенной катушки индуктивности, широко применяются при отработке технологий изготовления сверхпроводящих плёнок и лент. Они позволяют оперативно получать информацию о таких важных параметрах сверхпроводника, как критическая температура, плотность критического тока, вольт-амперные характеристики (BAX) и т.п. При этом необходимо иметь модель, описывающую распределение индуцированных в образце токов. В данной работе рассматривается простая "электротехническая" модель, описывающая поведение тонкоплёночного образца во внешнем переменном магнитном поле, создаваемом измерительной катушкой, расположенной в непосредственной близости от поверхности плёнки, причем ось катушки перпендикулярна плоскости образца. Будем считать, что радиус данной катушки намного меньше планарных размеров исследуемого образца.

При пропускании переменного тока через измерительную катушку в образце индуцируется круговой ток. Радиальное распределение плотности данного тока напоминает

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: gavrs@lebedev.ru.

колокол, положение максимума которого совпадает со средним радиусом измерительной катушки. Простейшим приближением такой системы является "одновитковая" модель [1], в которой весь ток образца считается текущим по одиночному кольцевому контуру. Эта модель дает хорошее согласие с экспериментом на образцах в виде узких сверхпроводящих колец, однако для сплошных плёнок наблюдается заметное несоответствие. Дальнейшим развитием данной модели является разбиение образца на систему отдельных коаксиальных витков.

Рис. 1: Схематическое изображение системы "образец – измерительная катушка".

Описание модели. В данной работе рассмотрим "многовитковую" модель, в которой для описания неоднородного распределения токов в образце используется система вложенных изолированных коаксиальных витков (контуров), индуктивно связанных как с измерительной катушкой, так и между собой. Ток через измерительную катушку $I_0(t) = I_0 \sin \omega t$ (где I_0 – амплитуда тока возбуждения, ω – циклическая частота) задаётся внешним источником переменного тока. Для простоты представим образец в виде сверхпроводящего диска толщиной z, над которым на расстоянии h размещена измерительная катушка высотой H с внутренним и внешним радиусами R_1 и R_2 , соответственно (см. рис. 1). Будем считать, что радиус данного диска существенно превышает R_2 . Мысленно разобьём образец на N вложенных коаксиальных круговых контуров (со средними радиусами r_i и шириной dr) с центрами, находящимися на оси измерительной катушки. Пренебрегая изменением плотности тока по толщине плёнки, что справедливо при толщинах, меньших или соизмеримых с лондоновской глубиной проникновения магнитного поля λ исследуемого сверхпроводника, считаем распределение тока в каждом из контуров однородным (одномерная модель, 1D). Введём следующие обозначения: L_0 – индуктивность измерительной катушки, L_i – полная индуктивность *i*-го контура (сумма магнитной L_i^{mag} и кинетической L_i^{kin} индуктивностей), M_i – взаимная индуктивность *i*-го контура и измерительной катушки, M_{ij} – взаимная индуктивность *i*-го и *j*-го контуров (при i = j совпадает с L_i^{mag}), $I_i(t)$ – индуцированный ток *i*-го контура. Выражение для кинетической компоненты индуктивности *i*-го контура [2] имеет вид:

$$L_i^{\rm kin} = \frac{\mu_0 \lambda^2 \cdot 2\pi r_i}{dr \cdot z}.$$

При этом полные потоки магнитного поля через измерительную катушку Φ_0 и модельные контура Φ_k ($k = 1 \dots N$) могут быть записаны в виде:

$$\Phi_0(t) = L_0 I_0(t) + \sum_{i=1}^N M_i I_i(t),$$
...
$$\Phi_k(t) = M_k I_0(t) + \sum_{i=1}^N M_{ik} I_i(t).$$
(1)

Токи контуров описываются системой из N дифференциальных уравнений

$$\frac{dI_k(t)}{dt} = -\frac{1}{L_k} \left\{ V_k(I_k(t)) + M_k \frac{dI_0(t)}{dt} + \sum_{i=1, i \neq k}^N M_{ik} \frac{dI_i(t)}{dt} \right\},\tag{2}$$

а напряжение на выводах измерительной катушки представляется в виде:

$$E(t) = -\frac{d\Phi_0(t)}{dt} = -L_0 \frac{dI_0(t)}{dt} - \sum_{i=1}^N M_i \frac{dI_i(t)}{dt}.$$
(3)

Здесь $V_k(I_k)$ – ВАХ k-го контура, т. е. падение напряжения на полной длине $2\pi r_k$ данного контура (на активной части его полного сопротивления) при протекании через него тока I_k . Отметим, что учёт реальной ВАХ сверхпроводника является основным отличием от аналогичной модели из работы [3].

Таким образом, для нахождения распределения токов в образце необходимо решение системы из N дифференциальных уравнений (2). Откликом образца, регистрируемым на выводах измерительной катушки, при этом является второе слагаемое уравнения (3).

В том случае, когда для всех контуров V_k пренебрежимо мало (т. е. когда плотности индуцированных токов много меньше критического значения), что реализуется при относительно малой величине тока возбуждения через измерительную катушку, отклик образца носит исключительно линейный характер и выражается лишь в изменении индуктивности измерительной катушки [4]. В противном случае в спектре сигнала отклика появляются гармоники, вызванные искажениями синусоидальной формы токов контуров, в которых плотности токов близки к критической.

Краткое описание эксперимента. В ходе эксперимента вблизи поверхности исследуемого образца размещалась измерительная катушка высотой 0.4 мм, внешним диаметром около 1.6 мм и внутренним диаметром 0.4 мм, служащая одновременно и для создания возбуждающего переменного магнитного поля, и для приёма сигнала отклика образца. Катушка содержит около 600 витков медного обмоточного провода диаметром 20 мкм. Катушка смонтирована в корпусе держателя образца, обеспечивающего точное позиционирование плёнки относительно катушки, при этом ось катушки перпендикулярна плоскости образца. Держатель с образцом размещался в криостате, позволяющем проводить измерения в широком диапазоне температур.

В качестве образца использовался отрезок промышленной ВТСП-ленты SCS-12050-AP фирмы SuperPower (США) с толщиной сверхпроводящего слоя около 1 мкм. Измерения проводились при температуре 77 К в отсутствие внешнего постоянного магнитного поля. При этой температуре глубина проникновения магнитного поля составляет около 500 нм. Источником тока возбуждения являлся генератор спектрально-чистого синусоидального сигнала звуковой частоты с регулируемой амплитудой. Регистрация сигнала отклика и дальнейший его анализ осуществлялись с использованием методов цифровой обработки сигналов. Измерения проводились при частоте сигнала возбуждения около 1 кГц.

Обсуждение результатов моделирования и эксперимента. Рассмотрим результаты численного моделирования зависимостей амплитуд гармоник сигнала отклика от амплитуды тока возбуждения. Для расчётов воспользуемся широко используемой на практике [5] степенной ВАХ сверхпроводника

$$E = E_c \left(\frac{J}{J_c}\right)^n,\tag{4}$$

где E – величина падения напряжения на единицу длины, E_c – её пороговое значение (принята равной 1 мкВ/см), J – плотность тока образца, J_c – критическая плотность тока, n – показатель крутизны нарастания ВАХ. Применительно к рассматриваемой

модели ВАХ k-го контура имеет вид

$$V_k = 2\pi r_k E_c \left(\frac{|I_k|}{J_c \cdot z \cdot dr}\right)^n \cdot sgn I_k.$$
(5)

При моделировании использовались следующие подгоночные параметры: $J_c = 2.67 \text{ MA/cm}^2$, n = 20, h = 0.14 мм. Выбор этих параметров осуществлён "вручную" в ходе проведения серии расчётов из соображений удовлетворительного визуального согласия расчётных и экспериментальных данных, представленных на рис. 2. Измерительная катушка представлена в виде одиночного витка прямоугольного сечения с размерами, соответствующими указанным выше для реальной катушки. Расчёты взаимных индуктивностей круговых контуров прямоугольного сечения выполнены с использованием методов, описанных в работе [6]. Рассчитанные величины взаимной индуктивности между измерительной катушкой и контурами образца дополнительно умножены на число витков реальной измерительной катушки (600). Прочие параметры модели: z = 1 мкм, dr = 25 мкм, N = 200, $\omega = 6000 \text{ рад/c}$.

Стоит отметить, что использованные при моделировании параметры ВАХ несколько отличаются от типовых ($J_c = 3.2 \text{ MA/cm}^2$, n = 30 [5]), что может быть объяснено как естественным разбросом параметров промышленных лент (от партии к партии, по длине ленты), так и деградацией образца из-за механических воздействий и многочисленных термоциклирований в ходе подготовки образца и отработки техники эксперимента.

На рис. 2 показаны расчётные и экспериментальные зависимости амплитуд нечётных гармоник сигнала отклика от амплитуды тока возбуждения. Чётные гармоники при этом отсутствуют в силу симметричности ВАХ относительно полярности тока. Отметим, что имевшийся в распоряжении авторов образец не полностью соответствует идеализированному модельному образцу (в частности, имеется проводящая подложка, верхний защитный слой из серебра и меди, сравнительно большая толщина ВТСП слоя и т.п.). Этим, а также перегревом системы "катушка-образец" при высоких токах возбуждения могут быть объяснены имеющиеся количественные несоответствия графиков.

Для сравнения были проведены расчёты в рамках "одновитковой" модели, подробно описанной в [1]. Образец моделировался в виде одиночного "зеркального" витка с радиальными размерами, соответствующими измерительной катушке, и толщиной, равной толщине плёнки. Результаты расчётов представлены на вставке на рис. 2. Видно общее сходство характера поведения гармоник сигнала отклика, но при этом область возникновения нелинейного отклика в "одновитковой" модели является более узкой, а начало

Рис. 2: Расчётные (линии) и экспериментальные (кружки) зависимости амплитуд гармоник сигнала отклика (с третьей по девятую) как функции амплитуды тока возбуждения. Погрешности экспериментальных данных укладываются в размер символа. На вставке кружками показаны аналогичные расчётные зависимости, полученные в рамках "одновитковой" модели.

роста гармоник – более резким. Также наблюдается выраженное количественное несоответствие амплитуд гармоник сигнала отклика. Это связано с жёстким ограничением пространственной области протекания индуцированного тока и невозможностью его перераспределения в радиальном направлении.

Таким образом, рассмотренная "многовитковая" модель описывает поведение реальных сверхпроводящих плёнок и лент в целом более достоверно, чем "одновитковая" модель. Тем не менее, при соответствующем подборе "эквивалентного витка" (а именно, его индуктивности L_2 и параметра связи с катушкой M согласно обозначениям из [1]), по-видимому, возможно использование формул "одновитковой" модели для восстановления ВАХ материала по экспериментальным данным.

На рис. 3 представлено распределение пиковых значений плотности тока контуров "многовитковой" модели для различных амплитуд тока возбуждения. Здесь, в отличие от модели [3], на величину плотности тока не накладывалось ограничение, не позволяющее току превышать критическое значение. В рассматриваемом случае распределение тока полностью определяется заданной ВАХ, в частности показателем степени. Видно,

Рис. 3: Расчётное радиальное распределение пиковых значений плотности тока в образце. Амплитуды тока возбуждения (кривые снизу-вверх): 25, 50, 60, 70, 80, 90, 100, 120 мА, соответственно. Пунктиром обозначена модельная величина критической плотности тока 2.67 MA/см².

что с ростом амплитуды тока возбуждения увеличивается область, в которой имеется падение напряжения, определяющее нелинейный отклик. Однако фазы и пиковые значения токов отдельных контуров, входящих в данную область, различаются между собой. В результате регистрируемый на выводах измерительной катушки отклик образца оказывается суммой откликов этих контуров, что размывает предсказываемую "одновитковой" моделью [1] зависимость амплитуд гармоник от тока возбуждения в области малого отклика. Отметим, что не учитываемое в данной простой модели тепловыделение в контурах с сверхкритической пиковой плотностью тока ограничивает её применимость на практике, причём предел применимости определяется теплоэлектрофизическими свойствами исследуемого материала (условия теплоотвода, наличие тепловой стабилизации и т.п.).

Заключение. В настоящей работе представлена простая модель для расчёта распределения индуцированных токов в тонкой (толщиной порядка λ и менее) сверхпроводящей плёнке под действием локального переменного поля, создаваемого измерительной катушкой. В рамках предложенной модели получено пространственное распределение пиковых значений плотности тока в образце, позволяющее наглядно представить динамику его критической области, а также рассмотрен спектральный состав сигнала отклика в зависимости от амплитуды тока возбуждения. Показана применимость данной модели к реальным образцам.

Стоит отметить, что применение аналогичной модели к сравнительно толстым (более 2λ) плёнкам потребует учёта неоднородного распределения тока по толщине образца путём введения разбиения на отдельные слои (двумерная модель 2D). Уравнения модели при этом не изменятся, ужесточатся лишь требования к точности расчёта взаимных индуктивностей контуров, а также увеличится вычислительная сложность решения задачи.

Работа выполнена в рамках государственного задания АААА-А19-119083090048-5.

ЛИТЕРАТУРА

- С. Ю. Гаврилкин, О. М. Иваненко, К. В. Мицен, А. Ю. Цветков, Краткие сообщения по физике ФИАН 41(2), 26 (2014). DOI: 10.3103/S1068335614020043.
- [2] В. В. Шмидт, Введение в физику сверхпроводников (М., МЦНМО, 2000).
- [3] G. D. Poulin, J. S. Preston, T. Strach, Phys. Rev. B 48(2), 1077 (1993). DOI: 10.1103/PhysRevB.48.1077.
- [4] П. И. Безотосный, С. Ю. Гаврилкин, О. М. Иваненко и др., Краткие сообщения по физике ФИАН 44(9), 30 (2017). DOI: 10.3103/S1068335617090056.
- [5] M. Chudy, Z. Zhong, M. Eisterer, T. Coombs, Supercond. Sci. Technol. 28, 035008 (2015). DOI: 10.1088/0953-2048/28/3/035008.
- [6] А. А. Иванов, Вестн. Новосиб. гос. ун-та. Серия: Физика 9, вып. 1, 10 (2014).

Поступила в редакцию 7 августа 2023 г. После доработки 28 февраля 2024 г.

Принята к публикации 29 февраля 2024 г.