МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ

УДК 539.1.074.3

ОПТИМИЗАЦИЯ МОНОЛИТНОГО СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА ДЛЯ ПОЗИТРОННО-ЭМИССИОННОГО ТОМОГРАФА

М. В. Белов, М. В. Завертяев, В. А. Козлов, В. С. Цхай

Проведено моделирование и оценка разрешения монолитных позиционно чувствительных детекторов с различными поверхностями. Наилучший результат был получен при использовании комбинации грубой полировки поверхности кристалла и тефлоновой обертки с разрешением по глубине взаимодействия $dZ=0.89\pm0.01$ мм. Наилучшее разрешение в плоскости $dX=0.53\pm0.01$ мм было получено для тонко полированной пластины с ESR пленкой. Диффузный отражатель также демонстрирует повышение светосбора на 33% по сравнению с зеркальным.

Ключевые слова: сцинтилляционные кристаллы, гамма-излучение, позитронноэмиссионная томография, искусственный интеллект, детекторы излучения.

Введение. Современные позитронно-эмиссионные томографы (далее ПЭТ) в качестве детекторов гамма-квантов используют сборки, состоящие из большого числа индивидуальных сцинтилляционных кристаллов, соединенных с многоканальными фотоумножителями (далее ФЭУ). Пространственное разрешение таких детекторов ограничено физическими размерами кристаллов и ячеек ФЭУ. Альтернативой таким сборкам являются детекторы с монолитными сцинтилляционными пластинами. Монолитные кристаллы, соединенные с многоканальными ФЭУ, позволяют восстанавливать координаты в плоскости с высокой точностью, за счет возможности использования распределения сигналов от вспышек по каналам ФЭУ. Также такая конструкция позволяет восстанавливать координату по глубине взаимодействия. Кроме того, уменьшение числа рабочих элементов повышает надежность и понижает стоимость детекторного

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: vtskhay@lebedev.ru.

элемента. Также стоит отметить, что данные детекторы и алгоритмы восстановления координаты взаимодействия применимы не только для ПЭТ.

В данной работе проведена оценка пространственного разрешения монолитного сцинтилляционного детектора для ПЭТ в зависимости от свойств поверхности кристалла при помощи моделирования методом Монте-Карло.

Исследуются два варианта поверхности кристалла – рассеивающая (грубая полировка и покрытие тефлоновой пленкой) и зеркальная (тонкая полировка и зеркальная пленка "enhanced specular reflector film (ESR)", производимая 3M, с оптическим клеем).

Для оценки разрешающей способности пластины использовался алгоритм на основе искусственной нейронной сети.

Методы и средства. Модель разработана на основе библиотеки GEANT4 [1]. Модель состояла из сцинтилляционного кристалла LSO(Y) [2] размерами 57.6 × 57.6 × 6 мм³, соединенного через слой оптической смазки DOW Corning с 64-х канальным кремниевым фотоумножителем (рис. 1), который моделировался с параметрами, имитирующими Sensl ARRAYC-60035-64P-PCB. В качестве источника был взят изотропный точечный источник 511 КэВ гамма-квантов, расположенный на расстоянии 35 см от центра кристаллической пластины.

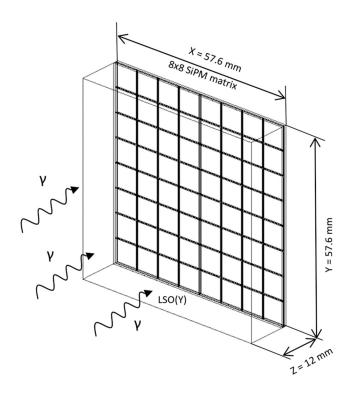


Рис. 1: Схема детектора.

Рассматривалось два варианта поверхности кристалла. Для моделирования поверхности использовались встроенные в GEANT4 таблицы LUT Davis [3]. Первый вариант представлял собой кристалл с грубой полировкой и тефлоновой пленкой в качестве покрытия. Во втором варианте моделировался кристалл с тонкой полировкой и покрытием из ESR пленки, соединенным с кристаллом через слой оптического клея.

Для обеих комбинаций было смоделировано по 2200000 событий, из которых 1100000 представляли собой события, где первым и единственным взаимодействием гамма-кванта являлось полное поглощение (фотоэффект). Оставшиеся 1100000 события содержали многократные рассеивания (комптон-эффект) с условием полного выделения энергии налетающего гамма-кванта в кристалле. Во втором случае точкой взаимодействия считалась координата первого взаимодействия. Первичный отбор событий для записи осуществлялся по сумме оптических фотонов образовавшихся в ходе сцинтилляции.

В ходе моделирования для каждого события записывалась координата точки первого взаимодействия, число взаимодействий и число фотоэлектронов, образовавшихся в каждом канале фотоумножителя.

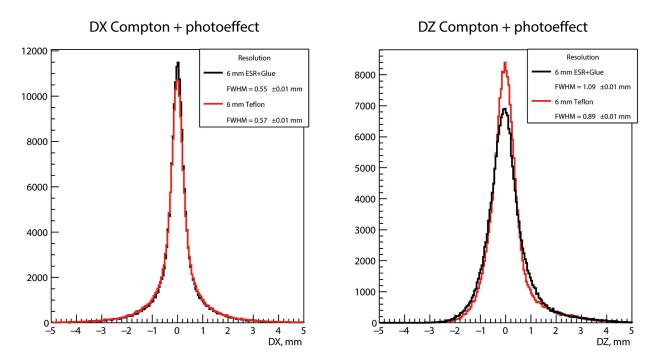


Рис. 2: Распределения отклонения координаты восстановленной точки взаимодействия от истинной.

Для оценки точности восстановления координаты была разработана искусственная нейронная сеть прямого действия [4]. В качестве функции нейронов было решено использовать функцию "leaky rectified linear unit (ReLU)". Для обучения нейросети использовался алгоритм обратного распространения ошибок [5]. В качестве входных данных сети использовалось распределение сигналов по каналам детектора. В качестве решения – координаты первого взаимодействия гамма-кванта в детекторе. Для каждого варианта детектора обучение сети производилось на 1000000 событий с фотоэффектом и 1000000 событий с многократными рассеиваниями. Проверка работы сети осуществлялась на оставшихся 200000 событиях из соответствующего набора (комбинации типа обработки поверхности и отражателя). Для оценки влияния числа нейронов и слоев сети на результат процесс обучения и оценки работы был повторен для нескольких вариантов сети.

Результаты. В обоих случаях лучшие результаты продемонстрировала сеть, состоящая из 2-х слоев по 1024 нейронов. Разрешающая способность сети оценивалась при помощи построения распределений отклонений точки взаимодействия сети от истинной точки взаимодействия. Распределения продемонстрированы на рис. 2.

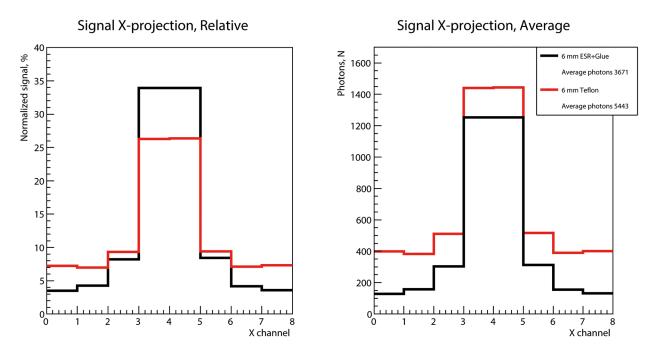


Рис. 3: Поканальные проекции распределения сигналов, полученные для двух вариантов пластины, относительные и абсолютные величины.

На рис. 3 приведены формы сигналов, получаемых с каналов фотоумножителя. Для построения распределения были отобраны события с единичным фотоэффектом из объема $1 \times 1 \times 1$ мм³, расположенным точно в центре кристалла.

Энергетическое разрешение для варианта с тефлоном составило 4%. Вариант с ESR пленкой продемонстрировал разрешение 5%.

Результаты работы различных вариантов показаны в табл. 1. Разрешение в плоскости оценивалось по оси X в силу симметрии детектора. $dR\sqrt{x^2+y^2+z^2}$.

Таблица 1 Пространственное разрешение пластины в зависимости от структуры нейросети. (Все погрешности составляют менее 0.01 мм, что эквивалентно ширине бина гистограммы.)

Нейроны	256 нейрона			512 нейрона			1024 нейрона		
	dX,	dZ,	dR,	dX,	dZ,	dR,	dX,	dZ,	dR,
Слои	MM	MM	MM	MM	MM	MM	MM	MM	MM
6 мм полированная пластина, ESR пленка с клеем									
1 слой	0.6	1.35	1.61	0.57	1.28	1.52	0.57	1.2	1.45
2 слоя	0.58	1.2	1.44	0.57	1.1	1.36	0.53	1.09	1.33
3 слоя	0.56	1.24	1.48	0.57	1.25	1.48	0.55	1.24	1.47
6 мм грубая пластина, тефлон									
1 слой	0.63	1.04	1.38	0.61	0.99	1.32	0.61	0.97	1.3
2 слоя	0.59	0.95	1.27	0.58	0.91	1.22	0.57	0.89	1.19
3 слоя	0.59	0.96	1.27	0.55	0.92	1.2	0.58	0.96	1.26

3аключение. Моделирование демонстрирует, что комбинация грубой полировки с диффузным отражателем показывает лучший результат $dR=1.19\pm0.01$ мм в общем, а также лучший результат по глубине взаимодействия $dZ=0.89\pm0.01$ мм. Пластина с диффузным отражателем также демонстрирует повышение светосбора на 33% по сравнению с зеркальной, и, соответственно, лучшее энергетическое разрешение. В то же время тонко полированная пластина показала лучший результат по разрешению в плоскости $dX=0.53\pm0.01$ мм. Этот результат может быть объяснён лучшим отношением сигнал/шум по сравнению с диффузной пластиной. Более высокий светосбор в диффузной пластине является результатом того, что из-за случайной природы направления оптического фотона после взаимодействия с поверхностью средняя длина пути

фотона через среду уменьшается. Большое число фотоэлектронов ведет к меньшей статистической погрешности числа фотонов в пике, что влияет на точность определения координаты Z. Высокая эффективность диффузного отражателя также приводит к лучшему энергетическому разрешению $\Delta E = 4\%$ по сравнению с зеркальным $\Delta E = 5\%$.

ЛИТЕРАТУРА

- J. Allison, K. Amako, J. Apostolakis, et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016). DOI: 10.1016/j.nima.2016.06.125.
- [2] Ю. Д. Заварцев, М. В. Завертяев, А. И. Загуменный и др., Краткие сообщения по физике ФИАН **40**(2), 13 (2013). DOI: 10.3103/S1068335613020024.
- [3] E. Roncali, S. Cherry, Phys. Med. Biol. $\mathbf{58}(7)$, 2185 (2013). DOI: 10.1088/0031-9155/58/7/2185.
- [4] G. Cybenko, Math. Control Signal Systems 2, 303 (1989). DOI: 10.1007/BF02551274.
- [5] D. Rumelhart, G. Hinton, R. Williams, Nature **323**, 533 (1986). DOI: 10.1038/323533a0.

Поступила в редакцию 9 апреля 2024 г. После доработки 3 июня 2024 г. Принята к публикации 4 июня 2024 г.