УДК 539.172.12

ИЗМЕРЕНИЕ СЕЧЕНИЙ ОБРАЗОВАНИЯ РАДИОИЗОТОПОВ ЛАНТАНА ПРИ ВЗАИМОДЕЙСТВИИ ПРОТОНОВ С ЭНЕРГИЕЙ ДО 30 МЭВ С ЯДРАМИ Ва-135

И.А. Хоменко, Е.С. Кормазева, В.И. Новиков, Р.А. Алиев

Представлены результаты эксперимента по облучению мишеней [¹³⁵Ba]BaCO₃ пучком протонов с начальной энергией 30 МэВ. Впервые измерены сечения образовавшихся в результате ядерных реакций ¹³⁵Ba(p, x) радиоизотопов лантана и бария и проведено их сравнение с теоретическими данными. Показана возможность наработки ¹³⁵La и ¹³³La для дальнейшего медицинского использования.

Ключевые слова: пучки протонов, ядерные реакции, сечения, лантан-135.

Введение. Радионуклиды применяются для диагностики и лечения рака путем введения их в организм пациента в виде радиофармпрепаратов, способных накапливаться в опухоли. В течение последних нескольких лет растет интерес к радиоизотопам лантана, поскольку они имеют подходящие свойства для ядерной медицины. ¹³²La ($T_{1/2} = 4.8$ ч) и ¹³³La ($T_{1/2} = 3.912$ ч) испускают позитроны, используемые в позитронно-эмиссионной томографии [1], ¹³⁵La ($T_{1/2} = 19.5$ ч) – Оже-электроны, перспективные для терапии [2].

Для планирования метода получения радионуклидов с помощью пучков заряженных частиц необходимы надежные величины сечений ядерных реакций. В случае ¹³⁵La исследованы реакции на ядрах бария естественного изотопного состава под действием протонов [3, 4], дейтронов [5] и альфа-частиц [6], а также реакция ¹³³Cs(α , 2n) [7]. Для получения ¹³³La предложены реакции под действием протонов, дейтронов и альфа-частиц на ^{nat}Ba, а также реакции ¹³⁹La(p, x) [8] и ^{nat}Ce(p, x) [9]. Хотя реакция ¹³⁵Ba(p, x) была использована для наработки ¹³⁵La и ¹³³La [1, 10], ранее ее сечения измерены не были.

НИЦ "Курчатовский институт", 123182 Россия, Москва, пл. Академика Курчатова, 1; e-mail: khomenko.ia@mail.ru.

Данная работа посвящена исследованию сечений реакций 135 Ba(p, x) методом стопки фольг, а также рассмотрению данной реакции как способа наработки 133 La и 135 La для медицинского использования.

Экспериментальная часть.

Мишени. Тонкие слои из ¹³⁵ВаСО₃ (1.9–4.5 мг/см², Ø 1 см, изотопный состав: ¹³⁵Ва – 94.9%, ¹³⁶Ва – 2.31%, ¹³⁸Ва – 2.01%, ¹³⁷Ва – 0.59%, ¹³⁴Ва – 0.19%, "Электрохимприбор", г. Лесной, Свердловская обл., Россия) были нанесены на алюминиевую подложку (~30 мкм) методом седиментации из суспензии с ацетоном и коллодием (1–2% динитроцеллюлозы от массы мишени). Для механической защиты дополнительно использовалась Al фольга (~8 мкм). В стопку между 7 мишенями были помещены Al поглотители, толщина их была подобрана таким образом, чтобы обеспечить равномерное уменьшение входной энергии пучка при прохождении через стопку мишеней. Также в стопке были размещены Cu фольги (~10 мкм) для контроля параметров пучка методом мониторных реакций.

Облучение и гамма-спектрометрия. Всю стопку облучали на ускорителе У-150 (НИЦ "Курчатовский институт") протонами с энергией 30.0 ± 0.5 МэВ в течение 30 мин при токе 191 ± 12 нА, значение которого было уточнено с помощью мониторных реакций ^{nat}Cu(p, x)^{62,65}Zn [11]. Расчет энергетических потерь в мишенной конструкции был выполнен при помощи программы SRIM 2008.04 [12] и алгоритма линейной аппроксимации пробега из [13].

Активность продуктов реакций определялась гамма-спектрометрически с помощью детектора из сверхчистого германия ORTEC GEM 35P4. Калибровку проводили с помощью сертифицированных точечных источников ¹⁵²Eu, ⁶⁰Co, ¹³⁷Cs, ²⁴¹Am. Обработку спектров проводили в программе SpectraLine 1.6.8420 (ЛСРМ, Россия). Использовали данные из базы ядерных данных NuDat 3.0. Каждую мишень ¹³⁵Ba измеряли 2-3 раза в течение 2-3 суток после облучения.

Обработка результатов. Расчет сечений выполняли по уравнению активации. Относительная неопределенность сечений рассчитана как квадратный корень суммы квадратов относительных неопределенностей калибровки (5%), толщины мишени (10%), тока протонов (6%), ядерных данных (1%) и неопределенности площади фотопика (3– 32%). Расчет выходов реакций проводился с использованием программы RYC [14]. Теоретические значения сечений реакций взяты из базы данных TENDL-2023 [15]. *Результаты и их обсуждение.* В табл. 1 представлены идентифицированные продукты реакции ¹³⁵Ba(*p*, *x*), в табл. 2 – численные значения полученных сечений реакций, на рис. 1 – их сравнение с теоретическими кривыми из TENDL-2023.

Таблица 1

Радионуклид	$T_{1/2}$	Тип	$E_{\gamma},$	$I_{\gamma}, \%$	Реакция	Энерг. эффект
		распада	кэВ		образования	реакции, МэВ
¹³³ La	3.912 ч	EC $\beta +$	278.8	2.44	135 Ba $(p, 3n)$	-19.3
¹³⁵ La	19.5 ч	EC $\beta +$	480.5	1.52	135 Ba (p,n)	-1.9
^{133m} Ba	38.93 ч	IT, EC	275.9	17.7	135 Ba $(p, p2n)$	-16.4
					$^{135}\mathrm{Ba}(p,dn)$	-14.2
^{135m} La	28.7 ч	IT	268.2	16	$^{135}\mathrm{Ba}(p,p')$	-0.27

Продукты реакции $^{135}Ba(p,x)$ и их ядерно-физические свойства (NuDat3.0.)

Таблица 2

Экспериментально полученные при облучении ¹³⁵Ва пучками протонов сечения образования радионуклидов ^{133,135}La, ^{133m,135m}Ва

$E, M \ni B$	σ, мб							
	¹³³ La	135 La	^{133m} Ba	^{135m} Ba				
29.8 ± 0.5	1214.8 ± 136.8	71.2 ± 11.3	39.5 ± 4.6	41.9 ± 4.9				
25.0 ± 0.7	1005.2 ± 113.5	107.7 ± 15.5	$9.6{\pm}1.3$	45.3 ± 5.3				
19.8 ± 1.0	15.7 ± 9.7	121.3 ± 16.5	$0.7 {\pm} 0.5$	36.4 ± 4.3				
12.1 ± 1.5		$783.9 {\pm} 91.0$		$10.4{\pm}1.4$				
9.5 ± 1.7		423.5 ± 51.9		$3.4{\pm}0.9$				
6.7 ± 2.2		61.8 ± 12.0		$1.4{\pm}0.6$				
3.5 ± 3.0		$3.3{\pm}2.0$		1.9 ± 0.4				

Выход на толстой мишени в энергетическом диапазоне 29.8 \rightarrow 3.5 МэВ для реакции ¹³⁵Ba(p, n)¹³⁵La составляет 428 МБк/(мкА·ч); в энергетическом диапазоне 29.8 \rightarrow 19.8 МэВ для реакции ¹³⁵Ba(p, 3n)¹³³La – 3.9 ГБк/(мкА·ч).

По данной реакции при облучении в течение 8 часов и токе 10 мкА в энергетическом диапазоне 19.8 \rightarrow 3.5 МэВ возможна наработка ~26 ГБк ¹³⁵La (на конец облучения) без примеси ¹³³La. При облучении в энергетическом диапазоне 29.8 \rightarrow 19.8 МэВ в течение 2 часов при токе 10 мкА можно наработать до 65 ГБк ¹³³La с содержанием радиоизотопных примесей 2.7% на конец облучения (¹³⁵La).

Рис. 1: Сечения реакций: (a) ${}^{135}Ba(p,x){}^{133,135}La$; (б) ${}^{135}Ba(p,x){}^{133m,135m}Ba$.

Заключение. В данной работе были экспериментально определены сечения реакций 135 Ba $(p,x)^{133,135}$ La, 133m,135m Ba в энергетическом диапазоне 29.8 \rightarrow 3.5 MэB. Сечения для данной реакции были изучены впервые, что дополнит базу экспериментальных ядерных данных. Экспериментальные значения для образования 133,135 La и 133m,135m Ba согласуются с теоретическими функциями возбуждения, взятыми из TENDL-2023. Нарабатываемая активность и чистота продукта удовлетворяют критериям применимости в медицине.

Работа выполнена в рамках государственного задания Национальный исследовательский центр "Курчатовский институт".

ЛИТЕРАТУРА

- B. J. Nelson, B. S. Ferguson, M. Wuest, et al., Journal of Nuclear Medicine 63(4), 584 (2022). DOI: 10.2967/jnumed.121.262459.
- [2] J. B. Fonslet, B. Q. Lee, T. A. Tran, et al., Physics in Medicine and Biology 63(1), 1 (2018). DOI: 10.1088/1361-6560/aa9b44.
- [3] F. Tárkányi, F. Ditrói, B. Király, et al., Applied Radiation and Isotopes 68(10), 1869 (2010). DOI: 10.1016/j.apradiso.2010.03.010.
- [4] K. Prescher, F. Peiffer, R. Stueck, et al., Nuclear Inst. and Methods in Physics Research B 53, 105 (1991). DOI: 10.1016/0168-583X(91)95645-T.

- [5] F. Tárkányi, A. Hermanne, F. Ditrói, et al., Nuclear Inst. and Methods in Physics Research B 414, 18 (2018). DOI: 10.1016/j.nimb.2017.09.022.
- [6] I. A. Khomenko, E. S. Kormazeva, V. N. Unezhev, R. A. Aliev, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 535, 47 (2023). DOI: 10.1016/j.nimb.2022.11.022.
- [7] N. P. M. Sathik, M. A. Ansari, B. P. Singh, R. Prasad, Pramana 47(5), 401 (1996).
 DOI: 10.1007/bf02847827.
- [8] K. V. Becker, E. Vermeulen, C. J. Kutyreff, et al., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 468, 81 (2020). DOI: 10.1016/j.nimb.2020.02.024.
- [9] F. Tárkányi, A. Hermanne, F. Ditrói, et al., Nuclear Instruments and Methods in Physics Research 412, 46 (2017). DOI: 10.1016/j.nimb.2017.09.008.
- [10] K. S. Pedersen, C. Deville, U. Søndergaard, et al., Applied Radiation and Isotopes 192, 110612 (2023). DOI: 10.1016/j.apradiso.2022.110612.
- [11] A. A. Hermanne, V. V. Ignatyuk, R. Capote, et al., Nuclear Data Sheets 148, 338 (2018). DOI: 10.1016/j.nds.2018.02.009.
- [12] J. F. Ziegler, M. D. Ziegler, J. P. Biersack, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(11-12), 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091.
- [13] C. F. Williamson, J.-P. Boujot, J. Picard, Tables of Range and Stopping Power of Chemical Elements for Charged Particles of Energy 0.5 to 500 MeV. CEQ-R-3042 (1966).
- [14] M. Sitarz, E. Nigron, A. Guertin, et al., Instruments 3(1), 1 (2019). DOI: 10.3390/instruments3010007.
- [15] A. J. Koning, D. Rochman, J.-Ch. Sublet, et al., Nuclear Data Sheets 155, 1 (2019).
 DOI: 10.1016/j.nds.2019.01.002.

Поступила в редакцию 24 сентября 2024 г.

После доработки 11 ноября 2024 г.

Принята к публикации 12 ноября 2024 г.