ЯДЕРНАЯ ФИЗИКА, ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ФИЗИКА ВЫСОКИХ ЭНЕРГИЙ

УДК 538.975

СТРУКТУРА, ФОРМА И РАЗМЕРЫ ТРЕКОВ БЫСТРЫХ ТЯЖЁЛЫХ ИОНОВ В ПОЛИЭТИЛЕНЕ

П. А. Бабаев, А. Е. Волков

Представлены результаты моделирования облучения аморфного полиэтилена быстрыми тяжёлыми ионами. Гибридная модель, сочетающая Монте-Карло код TREKIS и молекулярно-динамический пакет LAMMPS с реактивным силовым полем AIREBO-М позволила на атомарном уровне описать повреждение полиэтилена вдоль всего трека иона урана. Обнаружено несовпадение положений на траектории иона областей максимального выделения энергии и максимального повреждения.

Ключевые слова: электронные потери энергии, быстрые тяжёлые ионы, пик Брэгга, эффект скорости, полиэтилен, полимер, TREKIS, LAMMPS.

Введение. Облучение полимеров представляет практический интерес из-за их высокой чувствительности к вносимому возмущению [1]. Тормозящиеся в режиме электронных потерь энергии быстрые тяжёлые ионы (БТИ, массой $m \gtrsim 10 m_p$, где m_p – масса протона, и энергией $E \gtrsim 1$ МэВ/нукл) оставляют в полимерных мишенях протяжённые структурно-изменённые треки с экстремальным отношением длины к радиусу (~100 мкм/10 нм) [2]. Сочетание БТИ-облучения с химическим травлением позволяет создавать биосенсоры и биомиметические мембраны, а также устройства для детектирования вирусов, опреснения воды, ионной селекции, очистки растворов; 3D-шаблоны для создания нанопроволок, и т. д. [3]. Поскольку форма созданных нанопор определяет транспорт и чувствительность мембран [3], были разработаны методики травления для получения трековых пор различной формы [4, 5]: конусообразных, сигарообразных, воронкообразных, пулеобразных, гантелевидных, цилиндрических, а также асимметричных пор [6].

ФИАН, 119991 Россия, Москва, Ленинский пр-т, 53; e-mail: babaevpa@lebedev.ru.

Дефицит пучкового времени, высокая стоимость экспериментов и, вместе с тем, высокая значимость треков для практических применений остро ставит вопрос о создании физически обоснованных моделей, способных количественно и на атомном уровне разрешения описывать всю эволюцию формирования структурно-изменённых треков БТИ в полимерах вплоть до формирования конечного повреждения.

Существующие макроскопические теоретические модели образования трека БТИ не детализируют фемто- и пикосекундную кинетику возмущения и взаимодействия электронной и атомной подсистем материала, что не позволяет построить реалистичные начальные условия для последующей кинетики структурных изменений в нанометрической окрестности траектории иона. Например, как наглядно показано в обзоре [7], численное решение уравнений популярной двухтемпературной модели термической вспышки позволяет оценить размеры треков в полимерах, но только с учётом подгонки под результаты эксперимента как профиля начального возбуждения электронной системы, так и скорости электрон-фононного взаимодействия [8]. Показательно, что недостаточность детализации параметров возбуждения электронной системы не позволяет модели термического пика описать экспериментально наблюдаемый в органических и неорганических материалах "эффект скорости", который проявляется в различии повреждений мишени, вызываемых одним и тем же ионом с одинаковыми электронными потерями энергии, но с разной энергией.

Представляемая работа посвящена моделированию образования структурноизменённых треков БТИ в полиэтилене. Гибридный подход позволил разделить кинетику формирования трека на последовательность этапов, описывая их по отдельности наиболее подходящими моделями [7]. Применив связку Монте-Карло (МК) кода TREKIS [10], описывающего возбуждение электронной и ионной подсистем материала в нанометрической окрестности траектории иона, и молекулярно-динамического (МД) кода LAMMPS [11] для описания реакции атомной системы на вносимое возбуждение, мы получили структуру повреждения полиэтилена вдоль всей траектории налетающего БТИ. В работе найдены пороговые значения энергии иона, необходимые для создания повреждений. Показано, что положение на траектории области наибольшего выделения энергии в треке не совпадает с положением области максимального повреждения.

Методика. Для иллюстрации описания структурных повреждений вдоль всей траектории налетающей частицы был выбран случай облучения аморфного полиэтилена ионами урана с энергией ≈20 ГэВ. Вдоль траектории иона выбиралось несколько тонких слоёв толщиной 5 нм, положение которых соответствовало различным энергиям тормозящего иона. Для каждой энергии иона (каждого слоя) проводилось ~1000 запусков МК TREKIS для получения достоверной статистики радиальных распределений энергии, выделенной в атомную систему полиэтилена вокруг траектории иона. Полученные зависимости энергии от радиуса переводились в скорости атомов с использованием гауссова распределения, формируя начальные условия для МД моделирования. Выполнив в пакете LAMMPS МД расчёт для набора энергий иона, полученные повреждения в тонких слоях "сшивались" друг с другом для получения структуры, формы и размеров повреждённой области вдоль всей траектории иона.

Описание кода TREKIS и процессов, учитываемых в нём, можно найти в работах [10, 12]. МК расчёты не учитывают микроскопическую структуру материала, предполагая однородное распределение атомов, характеризуемое их плотностью. Реакция электронной системы мишени на внесённое тяжёлым ионом возбуждение и энергия, переданная в результате релаксации этого возбуждения в ионную систему материала, отслеживалась TREKIS вплоть до времён остывания электронов (100 фс после пролёта иона) [10]. В рамках первого борновского приближения код использует сечения рассеяния заряженных частиц, выраженные через функцию потерь энергии (ФЭП) мишени [13]. Функция потерь учитывает коллективный отклик электронной и атомной систем материала на вносимое возбуждение. Эта функция может быть восстановлена из оптических данных [14].

Экспериментальные данные показывают, что диаметры треков БТИ в полиэтилене не превышают 10 нм [8]. Низкая теплопроводность полиэтилена приводит к тому, что время формирования устойчивых (остывших) треков в этом материале значительно больше по сравнению с неорганическими материалами. Указанные особенности определили выбор минимальных размеров ячейки МД моделирования, которые, однако, достаточны для демонстрации влияния электронных спектров на повреждения в треках.

Ячейка полиэтилена размерами $20 \times 19 \times 5$ нм³ состояла из длинных линейных полимерных цепей и была сформирована с помощью программы CHARMM-GUI [15]. Программа создаёт структуру аморфного полимера, состоящую из запутанных длинных цепочек, и производит простейшую релаксацию этой системы на классическом потенциале (без учёта изменения химических связей). Каждая полимерная цепь линейна, не имеет ветвлений, содержит в себе 1328 атомов (442 атома углерода и 886 атомов водорода). Цепь состоит из звеньев CH_2 . На концах цепочек расположены группы CH_3 . Всего ячейка содержит 207168 атомов. Плотность полиэтилена в ячейке составляет $0.82 \, \Gamma/\text{см}^3$,

что близко к экспериментальным значениям для аморфного образца (0.85 г/см^3) [16].

Реальные образцы полиэтилена состоят из смеси аморфных и кристаллических фрагментов, при этом процентное соотношение варьируется в широких пределах для разных видов ПЭ: от 30–50% кристалличности для полиэтилена низкой плотности до 80–90% для полиэтилена высокой плотности. Эффекты повреждения в представляемой работе продемонстрированы на аморфной мишени.

Описание структурных изменений в полимерах предъявляет высокие требования к модельным силовым полям, которые используются при МД вычислениях. Эти поля должны одновременно описывать как эффект высоких температур и напряжений, реализуемых в треках, так и учитывать образование/разрыв химических связей между атомами (т. н. реактивность межатомного силового поля). Для описания взаимодействия атомов было использовано реактивное силовое поле AIREBO-M [17], созданное для описания ударных воздействий на материал. AIREBO-M обеспечивает учёт химических изменений в мишени – разрывов и образования химических связей.

Охлаждение краёв ячейки в рамках МД моделирования описывалось термостатом Берендсена с поддержанием температуры 300 К и характерным временем остывания 50 фс [18]. МД расчёт для каждого значения энергии налетающего иона проводился один раз до времени 250 пс после пролёта иона, когда в ячейке прекращались структурные и химические изменения [19].

Повреждение материала и размеры трека отслеживались по ненасыщенным атомам углерода, потерявшим связь хотя бы с одним своим соседним атомом. Ковалентная связь между атомами считалась разорванной, если атомы удалялись друг от друга на расстояние более чем 1.8 (связь углерод-водород) и 2.0 Å (связь углерод-углерод) [17]. Отслеживание изменения плотности в треке менее информативно [19] и более подходит для моделирования распыления, где эти изменения более заметны [20].

Более подробное описание моделирования и сравнение с экспериментом содержится в публикации [19].

Результаты и обсуждение. В табл. 1 представлены рассчитанные линейные потери энергии, остаточная длина пробега и количество ненасыщенных атомов углерода, создаваемых в моделируемом слое полиэтилена ионами урана различных энергий, тормозящихся в материале в режиме только электронных потерь энергии. Небольшая по сравнению с общей длиной трека область, повреждаемая в режиме ядерных потерь энергии иона, не учитывалась.

Таблица 1 Параметры облучения и результаты моделирования

Энергия иона,	Линейные потери	Остаточная длина	Количество ненасыщенных
МэВ	энергии, кэВ/нм	пробега, мкм	атомов углерода
14	3	0	0
60	9.3	7.8	6414
100	10.9	11.8	7405
205	13.4	20.5	8952
256	14	24.2	8986
300	14.5	27.3	9211
500	15.4	40.7	9220
700	15.6	53.6	8756
1060	15.4	76.9	8201
5500	10.9	424.8	3889
7472	9.6	618.8	2906
9453	8.6	838.1	2186
19336	5.7	2311.5	0

Использование гибридной модели (TREKIS+MД) позволяет учесть влияние различия в спектрах электронов, генерируемых в окрестности траектории иона, на пространственное распределение плотности энергии, переданной в атомную систему, и выделить "эффект скорости", когда при равных потерях энергии ион с меньшей скоростью производит большее повреждение [21, 22]. Рис. 1 иллюстрирует радиальные распределения плотности энергии, выделенной в атомную систему полиэтилена к моменту времени 100 фс после пролёта ионов урана с различной энергией. Полученному Брэгговскому пику электронных потерь соответствует энергия иона 700 МэВ, а ионы с энергией 100 и 5500 МэВ имеют одинаковые электронные потери (10.9 кэВ/нм). Последующий МД расчёт показывает заметную разницу в степени повреждения в сформировавшихся треках этих ионов (см. табл. 1 для 100 и 5500 МэВ): при одинаковых линейных потерях энергии ион с меньшей энергией обладает большей повреждающей способностью.

Молекулярно-динамические расчёты позволяют восстанавливать структуру, форму и размеры повреждения вокруг траектории ионов. Границы повреждения вдоль траектории иона (продольные размеры трека) определялись послойной экстраполяцией зависимости количества ненасыщенных атомов углерода от энергии иона.

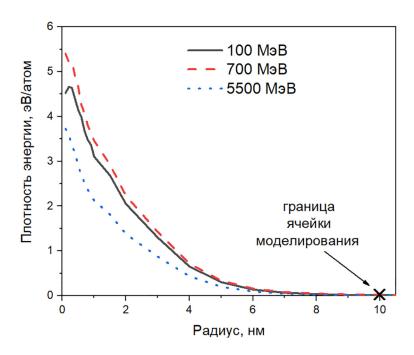


Рис. 1: *Радиальное распределение плотности энергии*, выделенной в атомную систему полиэтилена, после пролёта ионов урана.

Пороговые значения энергии иона урана, необходимые для создания повреждений составили $E_{th1} = 19336$ МэВ для высоких энергий и $E_{th2} = 14$ МэВ для низких энергий рядом с точкой остановки.

Структурно-изменённый трек состоит из плотной сердцевины (ядра) и менее повреждённой части (гало), которые показаны на рис. 2 более темным и светлым оттенком, соответственно. Критическая плотность повреждённых атомов углерода для определения размеров ядра трека определялась сравнением результатов моделирования облучения полиэтилена ионом ксенона с энергией 11.4 МэВ/нуклон с экспериментальными данными из работы [23]. Рассчитанная плотность ненасыщенных атомов углерода на расстоянии от траектории иона, соответствующем краю этого наблюдаемого трека, являлась в проведённом моделировании пороговым критерием определения радиуса ядра трека. Гало определялось как прилегающая к ядру повреждённая область без одиночных ненасыщенных атомов углерода, т. е. область с менее плотными кластерами ненасыщенных углеродов. Длина трека составляет приблизительно 2 мм. Максимальный диаметр ядра трека составляет около 140 Å, а ядра вместе с гало – около 160 Å.

Моделирование позволило обнаружить различие в примерно в 20 микрометров местоположениях областей максимального выделения энергии и сформированного повре-

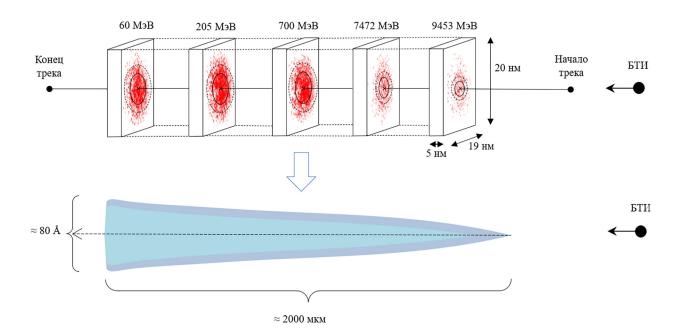


Рис. 2: Схема восстановления структурных изменений в треке иона урана в полиэтилене (вверху); размеры, структура и форма структурно-изменённого трека (внизу) при энергии иона $E_i > E_{th1}$.

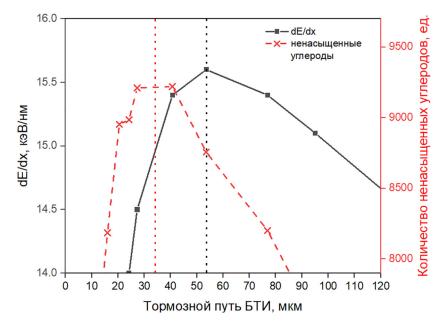


Рис. 3: Различие в зависимостях количества ненасыщенных атомов углерода в слое (рис. 2) и линейных потерь энергии в полиэтилене от расстояния до конца трека ионов урана. Пунктирные линии показывают максимумы соответствующих кривых.

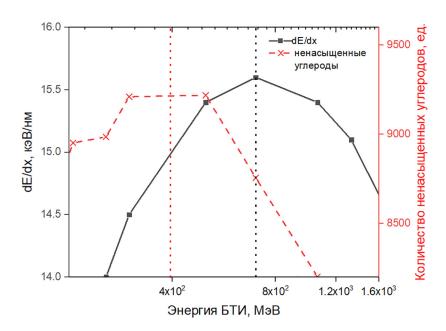


Рис. 4: *Различие* в зависимостях количества ненасыщенных атомов углерода в слое и линейных потерь энергии в полиэтилене от энергии ионов урана. Пунктирные линии показывают максимумы соответствующих кривых.

ждения (рис. 3). Различие в энергии ионов урана, формирующих эти области, составляет примерно 300 MэB (рис. 4).

Заключение. В результате моделирования определены на атомарном масштабе повреждённая структура, форма и размеры трека иона урана с энергией $20~\Gamma$ эВ, тормозящего в режиме электронных потерь энергии в полиэтилене. Впервые для полимерного материала показано, что расположение на траектории иона области максимального повреждения материала не соответствует положению области максимального выделения энергии в треке. Полученные результаты представляют интерес для разработки и эффективной работы устройств и детекторов, содержащих тонкие полимерные плёнки под воздействием облучения тяжёлыми ионами, а также для усовершенствования трековых методик формирования полимерных фильтров и 3D-шаблонов.

Работа была выполнена с использованием оборудования центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мегакласса" НИЦ "Курчатовский институт", http://ckp.nrcki.ru/.

ЛИТЕРАТУРА

- [1] M. Ferry, Y. Ngono, Radiation Physics and Chemistry **180**, 1 (2021). https://doi.org/10.1016/j.radphyschem.2020.109320.
- [2] Ф. Ф. Комаров, Успехи физических наук **187**(5), 465 (2017). https://doi.org/ 10.3367/UFNe.2016.10.038012.
- [3] S. Dutt, P. Apel, N. Lizunov, et al., J. Memb. Sci. **638**, 119681 (2021). DOI: 10.1016/j.memsci.2021.119681.
- [4] K. Xiao, G. Xie, P. Li, et al., Adv. Mater. 26, 6560 (2014). DOI: 10.1002/ adma.201402247.
- [5] F. Liu, M. Wang, X. Wang, et al., Nanotechnology 30, 052001 (2018). DOI: 10.1088/1361-6528/aaed6d.
- [6] P. Y. Apel, Radiation Physics and Chemistry 159, 25 (2019). DOI: 10.1016/j.radphyschem.2019.01.009.
- [7] N. Medvedev, A. E. Volkov, R. Rymzhanov, et al., J. Appl. Phys. 133, (2023). DOI: 10.1063/5.0128774.
- [8] M. S. da Rocha, J. P. M. May, R. S. Thomaz, et al., Macromol. Chem. Phys. 224, 2200339 (2023). DOI: 10.1002/macp.202200339.
- [9] X. Wang, Investigation of the detailed structure of ion tracks in polymer foils. A dissertation for the degree of PhD, Department of Materials Physics, Australian National University, 2022. https://openresearch-repository.anu.edu.au/items/fe9eaaf3-e926-4b1d-a9bb-d985e11a2a0e.
- [10] N. A. Medvedev, R. A. Rymzhanov, A. E. Volkov, J. Phys. D Appl. Phys. 48, 355303 (2015). https://doi.org/10.1088/0022-3727/48/35/355303.
- [11] S. Plimpton, Soft Matter 14, 2152 (2018). https://doi.org/10.1039/c7sm02429k.
- [12] R. A. Rymzhanov, N. A. Medvedev, A. E. Volkov, Nucl. Instrum. Methods Phys. Res. B: Beam Inter. with Mater. and Atoms 388, 41 (2016). https://doi.org/ 10.1016/j.nimb.2016.11.002.
- [13] L. Van Hove, Physical Review **95**, 249 (1954). DOI: 10.1103/PhysRev.95.249.
- [14] R. H. Ritchie, A. Howie, Philosophical Magazine 36, 463 (1977). DOI: 10.1080/14786437708244948.
- [15] Y. K. Choi, S.-J. Park, S. Park, et al., J. Chem. Theory Comput. 17, 2431 (2021). DOI: 10.1021/acs.jctc.1c00169.

- [16] M. Mokarizadeh Haghighi Shirazi, M. Khajouei-Nezhad, S. M. Zebarjad, R. Ebrahimi, Polymer Bulletin 77, 1681 (2020). https://doi.org/10.1007/s00289-019-02827-7.
- [17] T. C. O'Connor, J. Andzelm, M. O. Robbins, Journal of Chemical Physics 142, 024903 (2015). https://doi.org/10.1063/1.4905549.
- [18] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984). https://doi.org/10.1063/1.448118.
- [19] P. Babaev, F. Akhmetov, S. Gorbunov, et al., J. Mater. Sci., 1 (2023). https://doi.org/ 10.1007/s10853-023-09117-8.
- [20] W. Shen, X. Wang, G. Zhang, et al., Nucl. Instrum. Methods Phys. Res. B 535, 102 (2023). DOI: 10.1016/j.nimb.2022.11.021.
- [21] R. A. Rymzhanov, S. A. Gorbunov, N. A. Medvedev, A. E. Volkov, Nucl. Instrum. Methods Phys. Res. B 440, 25 (2019). https://doi.org/10.1016/j.nimb.2018.11.034.
- [22] R. A. Rymzhanov, N. A. Medvedev, A. E. Volkov, J. Mater. Sci. 58, 14072 (2023). https://doi.org/10.1007/s10853-023-08898-2.
- [23] J. Vetter, G. H. Michler, I. Naumann, Radiation Effects and Defects in Solids 143, 273 (1998). https://doi.org/10.1080/10420159808214032.

Поступила в редакцию 20 января 2025 г. После доработки 26 февраля 2025 г. Принята к публикации 27 февраля 2025 г.