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В рамках формализма интеграла по траекториям
квантово-механическое туннелирование описывается
инстантонами – решениями уравнений движения си-
стемы во мнимом времени. Однако во мнимом времени
этот формализм пригоден лишь для исследования харак-
теристик системы в состоянии термодинамического
равновесия и не применим для существенно неравновес-
ных явлений. В связи с этим, необходимо разработать
подход, учитывающий инстантонные решения в рамках
интеграла по траекториям в действительном времени.
В настоящей статье сделан шаг в этом направлении,
состоящий в обобщении трейс-формулы Гутцвиллера,
выведенной в формализме в действительном времени,
для плотности состояний квантово-механической си-
стемы в потенциале туннельного типа. Показано, что
для получения действительных значений расщепления
уровней в симметричном двухъямном потенциале необ-
ходимо учитывать приближённые решения уравнений
движения во мнимом времени, соответствующие
многоинстантонным конфигурациям.
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Введение. Туннелирование – квантовый феномен, суть которого состоит в том, что
волновая функция системы в ходе своей динамики проникает в область конфигураци-
онного пространства, отделённую потенциальным барьером, даже не имея на это до-
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статочно энергии. Это явление по своей сути квазиклассическое и может быть описано
в рамках квазиклассического приближения в квантовой механике путём решения урав-
нения Шрёдингера квазиклассическим методом. В то же время существует широкий
класс систем, для которых представляет интерес описание туннелирования в рамках
фейнмановского интеграла по траекториям, в частности, диссипативные системы, где
описание системы с помощью волновой функции вовсе невозможно.

Описание туннелирования в квантово-механических системах методом интеграла по
траекториям – направление, бурно развивавшееся в 1970-х годах прошлого века и при-
нёсшее значительные результаты как в квантовой механике, так и в теории поля [1].
Перечисленные выше результаты были получены в рамках интеграла по траекториям
во мнимом времени, который пригоден для нахождения корреляционных функций в
условиях термодинамического равновесия, которые можно получить посредством ана-
литического продолжения от мацубаровских частот к действительным [2].

Несмотря на десятилетия внимания теоретиков, построение квазиклассического под-
хода в действительном времени к описанию динамики систем с туннелированием сей-
час остаётся крайне актуальной задачей, отчасти как следствие возникновения подхода
Пикара–Лефшеца [3], основной идеей которого является комплексификация многообра-
зия интегрирования и её последующая деформация. Для систем в термодинамическом
равновесии инстантонная техника была сформулирована в рамках техники Келдыша в
недавней работе [4], где были получены корреляционные функции в реальном времени
для решений инстантонного типа.

Ещё одной важной мотивацией для таких исследований служит квантовая физика
мезоскопических систем, а именно динамические неравновесные явления в них. Осо-
бенный интерес в этом контексте представляют системы типа кубитов, в частности,
осцилляторы с диссипацией и параметрической накачкой. Так, в работе [5] в рамках
интеграла по траекториям для уравнения Линдблада в действительном времени был
найден лидирующий вклад для энергии низших уровней в диссипативной системе под
действием накачки с экспоненциальной точностью. В [6] с помощью анализа тополо-
гии комплексифицированных траекторий оказалось возможно вычислить скорость пе-
рехода между минимумами эффективного динамического потенциала в приближении
вращающейся волны.

Перечисленные результаты позволяют судить лишь о самых низкоэнергетических
состояниях в системе, а их расщепление было получено с экспоненциальной точностью.
В то же время известно, что для систем с туннелированием возможно исследовать
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и возбуждённые состояния, причём для их спектра возможно получить асимптотиче-
ское разложение, первый член которого содержит предэкспоненту и уже даёт большую
точность [7–9]. Поэтому ясно, что систематический учёт решений инстантонного типа
должен позволить исследовать возбуждённые состояния, в частности, предсказывать
правильное расщепление в симметричном двухъямном потенциале.

В настоящей статье предлагается обобщение трейс-формулы Гутцвиллера [10], да-
ющей спектр квантовой системы, на потенциалы с туннелированием, проведённое в
рамках формализма действительного времени. Проводится анализ случаев двухъямно-
го потенциала и потенциала с квазистационарными состояниями.

Формула Гутцвиллера без туннелирования. Рассмотрим одномерную квантово-
механическую систему с аналитическим стационарным потенциалом V (x), имеющим
один абсолютный минимум и неограниченно монотонно возрастающим при удалении
от него. Спектр такой системы состоит из дискретного набора невырожденных уровней
с энергией En, соответствующих собственным состояниям |n〉. В рамках интеграла по
траекториям плотность состояний в таком потенциале можно получить, введя величину

Z(E) =

∞∫
0

dt ei(E+i0)t

∫
dx〈x|Ût|x〉

∞∫
0

dt ei(E+i0)t

∞∑
n=0

〈x|n〉〈n|x〉e−iEnt =

=
∞∑
n=0

i

E + i0− En
, (1)

действительная часть которой соответствует плотности состояний ρ(E):

ReZ(E) =
∞∑
n=0

πδ(E − En) = πρ(E). (2)

В формулах выше Ût – оператор эволюции системы за время t, значение постоянной
Планка принято равным ~ = 1. Для матричного элемента оператора эволюции из на-
чальной координаты xi в конечную xf верно представление в виде интеграла по траек-
ториям

〈xf |Ût|xi〉 =

x(t)=xf∫
x(0)=xi

Dx(τ)e
i

t∫
0

dτ(mẋ2/2−V (x))
, (3)

в котором учитываются траектории с указанными граничными условиями. При взятии
функционального интеграла по s(τ) методом перевала в формуле (3) результат вы-
саживается на решения уравнении движения xcl(τ) с соответствующими граничными
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условиями, каждое из которых вносит вклад

〈xf |Ût|xi〉 =

√
i

2π

∂2

∂xi∂xf
Scl(xi, xf , t) eiScl(xi,xf ,t), (4)

где
Scl(xi, xf , t) = S[xcl(τ)]. (5)

Следующий шаг – взятие интегралов по x и t в (1). Используя свойства действия
(5), а именно

∂Scl(xi, xf , t)

∂xi
= −pi,

∂Scl(xi, xf , t)

∂xf
= pf ,

∂Scl(xi, xf , t)

∂t
= −Ecl, (6)

где pi и pf – начальные и конечные значения импульса траектории, а Ecl – энергия на
ней, получим, что перевальная точка по x оставляет только периодические траекто-
рии, на которых значения импульса в начальный и конечный момент времени совпада-
ют. При взятии интеграла по t перевальными оказываются периодические траектории,
классическая энергия которых равна E. В одном измерении периодическая траектория
имеет либо две точки поворота и является примитивной с периодом t(E), либо может
быть представлена как n-кратное прохождение такой примитивной траектории. Выпол-
няя дальнейшее интегрирование по t в окрестности седловой точки nt(E), получим

Z(E) =

∫
dx

√
m2

ṗiṗf
eiA(E) = −t(E)eiA(E), (7)

где

A(E) = nEt(E) + Scl(x, x, t) =

∮
pE(x) dx (8)

c
pE(x) =

√
2m(E − V (x)). (9)

Предэкспоненциальный множитель в (7) в ходе движения по траектории приобретает
дополнительный множитель (−i) при изменении знака скорости частицы, таким об-
разом, на интересующих нас периодических траекториях он равен (−1)n/ẋi, где ẋi –
начальная скорость, равная pi/m. Суммируя по многократным прохождениям одной
примитивной траектории и выполняя интегрирование по x, дающее примитивный пе-
риод t(E), получим вклад

Z(E) = t(E)
∞∑
n=1

(
−eiA(E)

)n
= −t(E)

eiA(E)

1 + eiA(E)
. (10)
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Используя тот факт, что t(E) = ∂A(E)/∂E, выражение выше можно привести к виду

Z(E) = i∂E ln
(
1 + eiA(E)

)
. (11)

Видно, что полученное выражение имеет полюса в точках
∮
pE(x)dx = 2π(n + 1

2
), со-

ответствующих правилу квантования Бора–Зоммерфельда. Вычисляя действительную
часть (11), получим

ReZ(E) = −t(E)

2
+ π

∞∑
n=0

δ(E − En). (12)

Первый член в формуле выше в точности сокращается с “классическим” вкладом от
эволюции на малых временах

δReZ(E)t→0 = Re

∫
dxdp

2π

i

E + i0−H(p, x)
=
t(E)

2
. (13)

В итоге формула (11) в сумме с (13) в точности воспроизводит квазиклассический
спектр одноямного потенциала.

Периодические траектории в туннельном случае. Теперь рассмотрим аналитиче-
ский потенциал, имеющий несколько “долин” и “холмов”, и будем интересоваться энер-
гиями E ниже высоты барьера, разделяющего его минимумы. В этом случае поми-
мо классических примитивных периодических траекторий, колеблющихся в каждом из
минимумов, есть ещё траектории инстантонного типа, на которой импульс принимает
чисто мнимое значение. Поскольку при интегрировании по траекториям поверхность
интегрирования можно деформировать в комплексную плоскость, траектории инстан-
тонного типа также дают свой вклад.

Найдём теперь все возможные периодические траектории на заданной энергии E,
при которой возможно туннелирование, а значения импульса и координаты на которых
могут уходить с действительной оси в комплексную плоскость. Для этого необходи-
мо более детально исследовать свойства функции pE(x), задаваемой ур-ем (9) в ком-
плексной плоскости (x может принимать комплексные значения). Функция pE(x) имеет
точки ветвления, определяемые условием V (x) = E, а сама она определена на двулист-
ной римановой поверхностиM. При этом движение частицы со временем описывается
формулой pE(x)dt = mdx, в которой dx и dt принимают теперь уже комплексные зна-
чения. Замкнутые траектории – это замкнутые контура на римановой поверхностиM
функции pE(x), период которых задаётся интегралом

T =

∮
mdx

pE(x)
(14)
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вдоль этого контура, в то время как укороченное действие равно

A =

∮
pE(x)dx. (15)

В силу аналитичности функции pE(x) на римановой поверхностиM, непрерывная де-
формация замкнутой траектории не меняет ни её период (14), ни её укороченное дей-
ствие (15), следовательно, все возможные замкнутые траектории системы можно де-
формировать таким образом, что они будут проходить вдоль разрезов по действитель-
ной оси между соседними точками поворота. Таким образом, все замкнутые траектории
разбиваются на классы эквивалентности в соответствии с тем, в какой последователь-
ности они “наматываются” на разрезы, а их периоды и действия совпадают. Каждая из
возможных периодических траекторий может служить перевальной точкой интеграла
по траекториям для Z(E), однако их огромное количество связано с тем, что координа-
та частицы была комплексифицирована. В то же время интегрирование по координате
в каждый момент времени проводится вдоль контура, который может быть деформи-
рован до действительной прямой, а не по всей комплексной плоскости, и среди всех
возможных траекторий вклад дадут лишь те из них, которые будут лежать на поверх-
ности интегрирования. Поскольку периодические траектории каждого класса сводятся
непрерывной деформацией к траекториям с действительными x, но, в общем случае,
комплексными t, далее можно действовать по аналогии с выводом, приведённым в про-
шлой секции.

Проведём более подробную классификацию периодических траекторий в потенциале
с различными минимумами и максимумами. Есть два типа разрезов, вокруг которых
вращаются траектории:

• Разрез, соответствующий колебаниям в i-м минимуме с действием Ai(E) на при-
митивной траектории с периодом Ti(E) = ∂Ai(E)/∂E;

• Разрез, соответствующий колебаниям внутри j-го барьера во мнимом време-
ни с действием 2iBj(E) на примитивной траектории с периодом −2iβj(E) =

2i∂Bj(E)/∂E (множитель 2 здесь введён для того, чтобы B совпадало с действием
инстантона в пределе β →∞).

Все возможные периодические траектории сводятся к последовательным обращениям
вокруг этих разрезов в допустимом порядке. Для нахождения всех релевантных вкла-
дов в Z(E) необходимо просуммировать вклады отдельных траекторий в соответствии
с (7), включая подбарьерные. При этом изначальный контур интегрирования по вре-
мени вместе с требованиями сходимости суммы диктует, что выбирать надо те из них,
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на которых время имеет положительную действительную часть, а действие – положи-
тельную мнимую часть (что определяет отрицательную мнимую часть времени).

Двухъямный потенциал. Просуммируем теперь вклады от всевозможных периоди-
ческих траекторий для двухъямного потенциала (см. рис. 1). В этом случае у системы
есть три разреза: (−w,−y) соответствует колебаниям вокруг левого минимума с укоро-
ченным действиемA1, (−y, y) – подбарьерному движению во мнимом времени с мнимым
укороченным действием 2B, (y, w) – колебаниям вокруг правого минимума c A2.

Рис. 1: Периодические траектории в двухъямном потенциале: колебания вокруг ле-
вого и правого минимумов с действиями A1,A2 и траектория туннельного типа с
действием 2iB.

Наивное суммирование, аналогичное (10), даёт

Z = Z1→1 + Z2→2 + Z1↔2 =

= i∂E

∞∑
N=1

1

N

(
−eiA1

)N
+ i∂E

∞∑
N=1

1

N

(
−eiA2

)N
+

+i∂E

∞∑
N=1

1

N

[
∞∑
m=0

∞∑
k=0

(
−eiA1

)m (−eiA1
)k (−e−B

)]N
=

= i∂E ln
(
1 + eiA1

)
+ i∂E ln

(
1 + eiA1

)
+ i∂E ln

(
1 +

e−B

(1 + eiA1) (1 + eiA2)

)
=
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= i∂E ln
((

1 + eiA1
) (

1 + eiA2
)

+ e−B
)
, (16)

где Z1→1, Z2→2 – вклады от траекторий, колеблющихся в каждом из минимумов, а Z1↔2 –
вклад, включающий перескоки из одного минимума в другой и обратно за мнимое вре-
мя. Множитель 1/N в сумме (16) возникает потому, что при многократном прохожде-
нии траектории интеграл по начальному условию (см. (7)) даёт примитивный период
траектории. Аналогичный результат в рамках формализма точного WKB-анализа был
получен в работе [11]. Исследуем положения полюсов полученного выражения, считая,
что двухъямный потенциал симметричен, что соответствует A1 = A2 = A. В этом
случае, приравнивая к нулю аргумент логарифма из (16), получим

eiA(E) = −1± ie−B(E). (17)

Как результат, уровни, получаемые стандартным независимым квантованием в каждой
из ям по правилу Бора–Зоммерфельда, расщепляются на δE ≈ ± 1

T (E)
e−B(E)/2, однако

также появляется дополнительная мнимая добавка к энергии Γ ≈ − 1
T (E)

e−2B(E). Сравне-
ние с ответом, полученным в инстантонной технике во мнимом времени [12, 1] показы-
вает, что выведенный нами ответ позволяет найти расщепление уровней лишь с экспо-
ненциальной точностью, в то время как префактор оказывается неверным. Более того,
появление во втором порядке по e−B(E)/2 мнимой части у энергии состояния не отвечает
физике системы. Обе эти проблемы связаны с тем, что, помимо точных решений урав-
нений движения, есть класс приближённых уравнений движения – многоинстантонные
конфигурации, вклад которых в функциональный интеграл имеет такой же порядок ма-
лости по e−B(E)/2 [1]. При достаточно низких энергиях обе указанные проблемы находят
решение в рамках инстантонной техники [7, 8]. Учёт многоинстантонных конфигураций
показывает, что получаемые вычислением в одном порядке мнимые части энергий соб-
ственных состояний сокращаются с поправками, возникающими в следующем порядке
после суммирования по Борелю [9]. Подобное суммирование можно провести в пределе
низких энергий, когда движение частицы под барьером во мнимом времени таково, что
она большую часть времени проводит в окрестности его минимумов.

Суммирование многоинстантонных вкладов. Проведём такое суммирование в при-
ближении невзаимодействующего инстантонного газа, дающем лидирующий вклад для
наинизших энергий. Рассмотрим движение частицы в симметричном двухъямном по-
тенциале с точками минимума в x = ∓a. Если энергия частицы близка к V (±a), что
соответствует низколежащим уровням системы, то период подбарьерного движения
β(E) → ∞, при этом частица находится вдали от x = ±a лишь конечное время δτ
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(время перескока). В этой ситуации можно сконструировать траектории, которые бу-
дут решениями уравнения движения лишь приближённо, при этом внося сопоставимый
с точным решением вклад. Обозначим подбарьерную часть траектории между соответ-
ствующими точками поворота ±y как x0(τ) → ∓y, τ → ∓β(E)/2. Многоинстантонные
конфигурации можно задать следующим образом:

x(τ) = q1x0(τ − 1), τ ∈
(

0, (τ1 + τ2)/2
)
, i = 1,

x(τ) = qix0(τ − τi), τ ∈
(
τi−1 + τi)/2, (τi + τi+1)/2

)
, i = 2, . . . , N − 1,

x(τ) = qNx0(τ −N), τ ∈
(

(τN−1 + τN)/2, β(E)
)
, i = N, (18)

где qi = ±1 определяют направление движения частицы и обязаны чередовать знаки,
а 0 < τ1 < · · · < τN < β(E), δτ � τi+1 − τi < β(E) − δτ . Действие на такой траекто-
рии с экспоненциальной точностью равно NS0 вне зависимости от положения центров
инстантонов (антиинстантонов) τi, что говорит о том, что их смещения – нулевые мо-
ды, интегрирование по которым нельзя проводить в гауссовом приближении. При этом
в туннелирование из одного минимума в другой дают вклады только конфигурации с
нечётными N , в то время как инстантонная поправка перехода в тот же самый минимум
даётся суммой по чётным N . Вычислим эти вклады (см. рис. 2)

δZ(E)inst
1→1 = i∂E

∞∑
M=1

1

M

 ∞∑
n=1

β∫
0

Kdτ1

β∫
τ1

Kdτ2· · ·
β∫

τ2n−1

Kdτ2n(−i)2ne−nB
∞∑
m=1

(−1)meimA

M

=

= i∂E ln

(
1− eiA

1 + eiA

(
1− cos(βKe−B)

))
(19)

отвечает за туннельные поправки к движению в окрестностях одного минимума, где
K – якобиан, возникающий при переходе к интегрированию по τi. Складывая со стан-
дартным вкладом (11), получим

Z1→1(E) = i∂E ln
(
1 + eiA cos(βKe−B)

)
. (20)

Вклад, учитывающий перескоки между разными минимумами, даётся несколько более
сложной формулой

Z(E)1↔2 = i∂E

∞∑
M=1

1

M


 ∞∑

p=1

β∫
0

Kdτ1

β∫
τ1

Kdτ2· · ·
β∫

τ2p

Kdτ2p+1(−i)2p+1e−(p+1/2)B

 ×
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Рис. 2: Диаграммы, соответствующие инстантонным вкладам в Z(E). Слева – тра-
ектории, многократное прохождение которых даёт δZ(E)inst1→1, справа – те, котрые
определяют δZ(E)1→2. Синие линии соответствуют классическим вкладам −eiA1,2 с
указанной кратностью, красные – инстантонным вкладам −ie−B с указанной крат-
ностью.

×
∞∑
s=1

(−eiA)s
∞∑
k=0

 ∞∑
m=1

(−eiA)m
∞∑
n=1

β∫
0

Kdτ1

β∫
τ1

Kdτ2· · ·
β∫

τ2n

Kdτ2n(−i)2ne−nB

k


2M

=

= i∂E ln

1 + sin2(βKe−B)

(
eiA

1 + eiA

)2
 1

1− eiA

1+eiA

(
1− cos(βKe−B)

)
2 =

= i∂E ln

(
1 + sin2(βKe−B)

[
eiA

1 + eiA cos(βKe−B)

]2
)
. (21)

Суммируя все полученные вклады, имеем

Z(E) = Z1→1(E) + Z2→2(E) + Z(E)1↔2 = i∂E ln
(
1 + 2eiA cos(βKe−B) + e2iA) . (22)

Это выражение имеет полюса в точках, соответствующих

A(E) = 2π

(
n+

1

2

)
± βKe−B, (23)
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что даёт спектр расщепление ∆n ≈ 2Kβ(En)
T (En)

e−B(En). Значение константы K можно вос-
становить, зная ответ для расщепления, полученный в инстантонной технике во мнимом
времени [1, 12] (что эквивалентно аналитическому продолжению статсуммы с больших
β на действительное время), что приводит к ответу ∆n = 2K ′e−B(En), где префактор
K ′ уже не зависит от E на низких энергиях. Полученное выражение имеет по сравне-
нию с (16) то преимущество, что не приводит к возникновению нефизической мнимой
поправки к уровням энергии в двухъямном потенциале. А его недостатком является
необходимость восстанавливать константу K исходя из уже известного результата. Тем
не менее, такой подход приводит к физически правильному и квазиклассически точно-
му ответу.

Полученный результат непосредственно обобщается на случай несимметричной ямы
с одинаковыми значениями потенциала в минимумах, приводя к

Z(E) = i∂E ln
(
1 +

(
eiA1(E) + eiA2(E)

)
cos(βKe−B(E)) + eiA1(E)+iA2(E)

)
. (24)

Легко проверить, что полюса этого выражения также находятся на действительной оси.
Однако, если устремить ширину одной из ям (скажем, второй) к бесконечности, то заме-
ной eiA2 → 0 можно получить мнимую добавку к энергиям уровней первой ямы, то есть
найти время жизни состояний. Стоит, однако, отметить, что проведённое вычисление не
совсем верно для задачи о распаде метастабильного состояния в окрестности локально-
го (но не глобального) минимума, поскольку тригонометрическое соотношение между
вкладами от нечётного и четного количества инстантонных перескоков основывается
на том, что инстантон проводит большое время у каждого из минимумов потенциала,
что возможно лишь, если значения потенциала в минимумах совпадают, при этом оба
эти минимума квадратичные.

Подводя итог, отметим, что при выводе формулы Гутцвиллера прямое суммирование
по циклам в случае двухъямного потенциала приводит к возникновению нефизичных
мнимых добавок. Для их устранения необходимо учесть также приближённые реше-
ния уравнений движения, соответствующие т. н. многоинстантонным конфигурациям.
Это явление, известное во мнимом времени как “Resurgence” [8, 9], позволяет сокра-
тить возникающие мнимые добавки. Для наинизших энергий учёт многоинстантонных
конфигураций можно провести явно, что и было сделано в настоящей работе. В то же
время, для промежуточных значений энергий (когда условие β(E)� T (E) не выполня-
ется) многоинстантонные конфигурации более не являются приближёнными решения-
ми уравнений движения, и вопрос о том, каким образом необходимо модифицировать
настоящий формализм для получения действительного спектра, остаётся открытым.
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Настоящая работа поддержана грантом Фонда развития теоретической физики и
математики “БАЗИС” № 23-1-4-49-1.
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