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Методом механоактивации синтезированы 

поликристаллические образцы стехиометрических 

железосодержащих сверхпроводников состава CaKFe4As4 и 

CaCsFe4As4, с фазовым составом, подтвержденным 

методом рентгенофазового анализа. Температуры 

сверхпроводящих переходов составляют 𝑇஼
௢௡௦௘௧  ≈ 34.7 К и 

31.3 К для CaKFe4As4 и CaCsFe4As4, соответственно, а 

ширина сверхпроводящего перехода составила ∆𝑇С ≈ 7.6 K 

и 6.3 K. По данным магнитных измерений и 

рентгенофазового анализа, в образце CaKFe4As4 не 

обнаружено примесных фаз. 
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1. Введение 

Оптимизация критических параметров (Jc, Hc2, Tc) в железосодержащих 

сверхпроводниках семейства 122 (AFe2As2, A – щёлочноземельный металл) требует точного 

контроля уровня допирования и однородности материала [1–4]. В отличие от соединений 

семейства 122, стехиометрические сверхпроводники семейства 1144 (AeAFe4As4, где Ae – 

щелочной металл) являются самодопированными и не нуждаются в допировании, а также 

обладают высокими значениями Tc ≈ 31–36 K, Jc ∼ 106 А/см2 и Нс2 ∼ 90 Тл при 4.2 К [5–7]. 

Однако соединения семейства 1144 можно синтезировать только в узком диапазоне 

температур, за пределами которого соединения распадаются на родительские фазы AFe2As2 и 

AeFe2As2 [8–11]. На данный момент наиболее изучены условия получения соединения 

CaKFe4As4 (CaK1144), которое синтезируется в интервале температур от 920 до 980 °C с 

небольшим количеством примесей фаз 122, исчезающих при приближении к температуре 

синтеза в 955 °С [8]. Однако, используя классический твердофазный синтез, одноэтапной 
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схемы «термообработка-гомогенизация» при 955 °C недостаточно, так как примесные фазы, 

ухудшающие сверхпроводящие параметры, сохраняются после первого этапа, поэтому 

требуется 3–4 повторных цикла «термообработки-гомогенизации» [8].  

Соединения CaKFe4As4 и CaCsFe4As4 (CaCs1144), были синтезированы ранее [5–11], 

однако отсутствие высококачественных образцов затрудняет более детальное изучение их 

физических свойств. Таким образом, синтез высококачественных образцов и исследование 

данного материала представляет значительный научный и прикладной интерес. Целью 

данной работы является синтез и характеризация образцов с минимальным содержанием 

примесных фаз. 

 

2. Синтез и характеризация 

Сверхпроводящие соединения были получены из элементов Ca (99.9%), K (99.9%), Cs 

(99.5%) Fe (99.9%) и As (99.999%). Компоненты загружали в стехиометрическом 

соотношении в размольную чашу. Размол проводили в вибрационной мельнице CryoMill, в 

которой кинетическая энергия шара, передаваемая порошку при соударении, приводила к 

уменьшению размера частиц и увеличению реакционной способности компонентов (метод 

механохимического активирования). После размола полученные порошки отжигали в печи 

при температурах 955 °С и 880 °С для CaK1144 и CaCs1144 соответственно. Метод синтеза 

аналогичного соединения CaRb1144 подробно описан в более ранней работе [12]. Образцы 

CaK1144 и CaCs1144 были получены с небольшой коррекцией времени термообработки по 

сравнению с методикой из работы [12], что улучшило состав и сверхпроводящие свойства 

материалов. 

Рентгенофазовый анализ выполнен на Rigaku MiniFlex 600 (CuKα, 1.5418 Å) в 

диапазоне 2Θ = 3–100°; измерения проводили в кювете, заполненной аргоном. Параметры 

кристаллической ячейки уточняли методом Le Bail при помощи программного пакета 

Jana2020 [13]. Динамическую магнитную восприимчивость определяли на PPMS-9 (с 

приставкой ACMS). Температурные зависимости магнитной восприимчивости объемных 

образцов получены в интервале T = 2–40 K в режиме ZFC в отсутствии внешнего магнитного 

поля. 

 

3. Результаты рентгенофазового анализа и магнитных измерений 

По результатам рентгенофазового анализа после первичного отжига в исследуемом 

температурном диапазоне от 850 °С до 1000 °С, была зафиксирована заметная доля 

примесных 122-фаз для образцов всех трех составов CaK1144 и CaCs1144. При оптимальной 

температуре синтеза содержание целевой фазы в образце достигло максимального значения 
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– не менее 97 об. %. Для исследуемых соединений оптимальные температуры составили: 

955°С (CaK1144) и 880 °С (CaCs1144). При дальнейшем увеличении температуры количество 

примесных фаз снова продолжало расти. Ранее в работе [12] было показано, что для 

CaRb1144 и EuCs1144 повторная гомогенизация с последующей термообработкой 

уменьшает количество примесей в образцах. Данный подход был применен и в настоящей 

работе.  

Для CaK1144 последующий цикл термообработки при 900 и 1000 °С практически не 

изменил концентрацию примесей, тогда как отжиг при 955 °С привёл к исчезновению 

рефлексов, соответствующих 122-фазам, и к полному исчезновению примесей (рис. 1) после 

второго отжига. Дальнейшие повторения схемы «термообработка-гомогенизация» 

приводили к увеличению концентрации примесных фаз, в частности приводили к 

увеличению доли фазы FeAs, что можно объяснить испарением щелочного или реакцией с 

материалом тигля или контейнера во время отжига. 

Аналогично и для CaRb1144, оптимальной температурой второго этапа 

термообработки является 900 °С [12], при 850 °С и 950 °С – уровень примесей примерно 

одинаков (рис. 1). 

 

Рис. 1. Дифрактограммы соединений CaKFe4As4, CaRbFe4As4 и CaCsFe4As4. 

Параметры элементарной ячейки исследованного соединения уточнены в 

пространственной группе P4/mmm и составляют: CaKFe4As4: a = 3.8526(6) Å и с = 12.817(2) 

Å, Rp = 6.385 %, wRp = 8.53%, что согласуется с литературными данными. 
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В то же время, повторный размол и отжиг для образцов CaCs1144 значительно 

ухудшил фазовый состав. Данная особенность синтеза этого соединения говорит о его 

большей чувствительности к параметрам синтеза, по сравнению с другими соединениями, 

синтезируемыми в данной работе. Образцы CaCs1144 имеют наименьшую долю примесей 

при однократной термообработке при температуре в 880 °С (рис. 2 А). Следует отметить, что 

на кривых температурной зависимости магнитной восприимчивости CaCs1144 при разных 

температурах синтеза после первой термообработки переход в сверхпроводящее состояние 

наблюдается только для образцов синтезированных при температуре 880 °С (рис. 2 Б). На 

основании проведенных экспериментов можно сделать вывод, что сверхпроводящий переход 

существует в образцах CaCs1144, синтезированных в узком диапазоне температур 880 ± 20°С 

при отжиге в течение 10 часов. 

 

 

Рис. 2. А) Дифрактограммы CaCs1144 после первого отжига при различных температурах 

синтеза и Б) зависимость магнитной восприимчивости от температуры соединений 

CaKFe4As4, CaRbFe4As4 [12] и CaCsFe4As4. 
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Несмотря на более высокую долю примесей по сравнению с CaRb1144 (Tsynt = 900 °C) 

и CaK1144 (Tsynt = 955 °C), у образца CaCs1144, синтезированного при Tsynt = 880 °C, ширина 

перехода в сверхпроводящее состояние ∆𝑇С  на графике температурной зависимости 

магнитной восприимчивости, сопоставима с значениями ∆𝑇С упомянутых ранее однофазных 

образцов и составляет ∆𝑇С ≈ 7.6 К, 6.4 К и 6,3 К, для CaK1144 (Tsynt = 950 °C), CaRb1144 (Tsynt 

= 900 °C) и CaCs1144 (Tsynt = 880 °C) соответственно. 

 

4. Выводы 

Используя метод механоактивации, были получены качественные 

поликристаллические образцы соединений семейства 1144. Температуры отжига образцов с 

минимальным количеством примесей составили: для CaK1144 – 955 °C после второго отжига 

(дальнейшие циклы увеличивают долю FeAs), для CaCs1144 – 880 °C после первого отжига 

(второй цикл ухудшает фазовый состав). Рентгенофазовый анализ и измерения 

температурной зависимости магнитной восприимчивости χ(T) подтверждают наличие 

целевой фазы и сверхпроводящих свойств образцов: ширина перехода составляет ΔTc ≈ 7.6 K 

(CaK1144, Tsynt = 955 °C) и 6.3 K (CaCs1144, Tsynt = 880 °C).  

Работа выполнена при поддержке гранта РНФ 24-72-10109 с использованием 

оборудования ЦКП ФИАН. 
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