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Изучены особенности вихревого сверхтока в двумерном 

сверхпроводнике с двумя инвертированными электронными 

зонами и спин-орбитальным взаимодействием Рашбы 

между различными орбиталями. В рамках приближения 

сильной связи и с использованием уравнений Боголюбова-де 

Жена получено выражение для сверхтока, обусловленного 

перескоками электронов между узлами решетки с 

переворотом спинового момента, которые в свою очередь 

вызваны спин-орбитальным взаимодействием. Показано, 

что при заметной величине интенсивности спин-

орбитальной связи данный вклад в суммарный сверхток 

может превышать вклад, вызванный стандартными 

процессами перескоков электронов в решетке. При этом 

отмеченные вклады имеют различные зависимости от 

температуры. 
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1. Введение 

В последнее время большое внимание уделяется исследованию генерации спонтанных 

сверхтоков в сверхпроводниках и сверхпроводящих структурах при наличии заметного спин-

орбитального взаимодействия (см. обзоры [1–3]). Известно, что сама по себе спин-

орбитальная связь не индуцирует спонтанных сверхтоков в трехмерных и двумерных 
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сверхпроводниках с «обычным» s-типом симметрии сверхпроводящего параметра порядка. 

Поэтому часто рассматриваются структуры, содержащие сверхпроводник s-типа и 

ферромагнетик, в которых нарушение симметрии пространственной инверсии на границе 

между материалами обеспечивает спин-орбитальную связь, которая, в свою очередь, при 

учете обменного поля ферромагнетика приводит к формированию спонтанных сверхтоков 

[4]. Отметим также, что в «необычных» сверхпроводниках с нарушенной симметрией по 

отношению к инверсии времени (таких как, киральные p୶ + ip୷  и 𝑑௫మି௬మ + 𝑖𝑑௫௬ 

сверхпроводники) генерация сверхтоков возможна и в отсутствии спин-орбитального 

взаимодействия [5–7]. 

Спин-орбитальное взаимодействие играет существенную роль при реализации 

топологической сверхпроводимости [1, 8], поэтому рассматриваемые эффекты возможны и в 

топологических сверхпроводниках. Недавно спонтанные сверхтоки в рамках формализма 

Боголюбова-де Жена были изучены в структуре, содержащей тонкие пленки 

сверхпроводника и ферромагнетика с анизотропией типа «легкая плоскость», при учете 

спин-орбитального взаимодействия [9]. Показано, что в такой системе формируется 

гибридный вихрь – связанная пара вихря Абрикосова в сверхпроводнике и магнитного вихря 

в ферромагнетике, в ядре которого локализованы майорановские моды. Для такого 

гибридного вихря, в отличие от вихря Абрикосова, спонтанные сверхтоки имеют различные 

направления циркуляции внутри ядра вихря и вне его. 

В данной работе будет рассмотрена более простая ситуация: случай вихря в 

двумерной структуре со сверхпроводимостью s-типа при учете межзонного спин-

орбитального взаимодействия типа Рашбы. Будет изучен обусловленный спин-орбитальным 

взаимодействием вклад в сверхток, генерируемый вихрем. Рассматриваемая модель [10, 11] 

описывает топологический сверхпроводник второго порядка, в котором формируются 

майорановские моды, локализованные в углах двумерной решетки. Также в ней возможна 

реализация мод с нулевой энергией возбуждения, локализованных в ядре вихря [12]. При 

этом описанные особенности сверхтока в общем случае не зависят от того, находится ли 

система в топологически тривиальной или нетривиальной фазе. 

2. Модель и выражения для сверхтоков 

Изучаемая модель на квадратной решетке описывает две электронные 

инвертированные зоны с межзонным спин-орбитальным взаимодействием Рашбы и 

сверхпроводящими спариваниями [10, 11]. В приближении сильной связи гамильтониан 

системы имеет вид 
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ℋ = ෍ ෍ (−𝜇 + 𝜂௟Δ𝜀 − 𝜂ఙℎ)𝑐௙௟ఙ
ற 𝑐௙௟ఙ

௟ୀ஺,஻௙ఙ

+ ෍ 𝜂௟𝑡ఋ𝑐௙௟ఙ
ற 𝑐௙ାఋ,௟ఙ

௙ఋ௟ఙ

+ ෍ 𝜆ఙఋ𝑐௙௟ఙ
ற 𝑐௙ାఋ,௟ఙ̅ഥ

௙ఋ௟ఙ

 

+ ෍൫Δ଴(𝑓)𝑐௙௟↑
ற 𝑐௙௟↓

ற + 𝐻. 𝑐. ൯

௙௟

+ ෍൫Δఋ(𝑓)𝑐௙௟↑
ற 𝑐௙ାఋ,௟↓

ற + 𝐻. 𝑐. ൯,

௙ఋ௟

                                       (1) 

где индексы l = A(B) обозначают различные орбитали и 𝑙 ̅ = 𝐵(𝐴)  соответственно; 𝜇  – 

химический потенциал, 𝛥𝜀 описывает энергетическое расщепление между орбиталями, так 

как 𝜂஺ = +1, 𝜂஻ = −1 ; ℎ = 𝑔𝜇஻𝐻  – зеемановский член и η஢ = +1, −1  для σ = ↑,   ↓ 

соответственно. Параметры перескоков между ближайшими узлами в направлениях x и y 

могут иметь различные знаки, поэтому 𝑡±௫ ≡ 𝑡௫, 𝑡±௬ ≡ 𝑡௬. Интенсивность межорбитального 

взаимодействия Рашбы определяется как λ஢,±୶ = ∓λη஢, λ஢,±୷ = ±i. 

Наличие вихря моделируется через амплитуду сверхпроводящих спариваний: 

                                                Δஔ(𝑓) = Δஔ𝑒௜௟ೡமಌ(௙) tanh ቆ
ห𝑅௙ + 𝛅/2 − 𝑅௩ห

ξ
ቇ,                    (2) 

где ϕஔ(f) = arg൫z(R୤ + 𝛅/2 − R୴)൯ , z(R୤) = x + iy; 𝛅 – вектор, соединяющий узел решетки, 

задаваемый вектором 𝐑௙, с одним из ближайших узлов (для локального спаривания 𝛅 = 0); 𝜉 

задает размер ядра вихря, параметр 𝑙௩ = ±1 различается для вихря и антивихря. Центр вихря 

имеет координаты, задаваемые 𝐑௩ . В дальнейшем будем рассматривать вихрь в центре 

решетки R୴ = a൫(Nୱ + 1)/2, (Nୱ + 1)/2൯ , где 𝑁௦  – число (нечетное) узлов решетки вдоль 

направлений x или y, a – параметр решетки. В данной работе для простоты рассмотрим 

только локальные сверхпроводящие спаривания s-типа с амплитудой Δ଴, а спариваниями с 

𝛅 ≠ 𝟎  пренебрежем (их учет приводил был к реализации зависящего от k в обратном 

пространстве сверхпроводящего параметра порядка расширенного s или 𝑑௫మି௬మ + 𝑖𝑑௫௬-типов 

симметрии). Как было показано ранее [10, 12], данный режим соответствует топологически 

тривиальной фазе, в которой майорановские угловые моды отсутствуют, однако реализуются 

нулевые моды (при Δε = 0), локализованные в ядре вихря. 

Отметим, что аномальные спаривания в гамильтониане (1) могут быть как 

наведенными за счет эффекта близости, так и обусловлены внутренними взаимодействиями 

в системе. В последнем случае, однако, возникает вопрос об области параметров, в которой 

реализуется сверхпроводящая фаза. В данной работе амплитуда Δ଴  будет рассматриваться 

как параметр. 

При получении выражения для оператора зарядового тока между узлами, связанными 

перескоками электронов, воспользуемся методикой, изложенной, например, в [7,13,14]. Для 

этого сделаем подстановку Пайерлса в гамильтониан (1), тогда оператор тока находится из 
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определения 𝒥௙,௙ାఋ = 𝜕ℋ/𝜕𝜃௙,௙ାఋ при A = 0 (парамагнитный вклад), где θ୤,୤ାஔ – интеграл по 

пути, соединяющему узлы 𝑓 и 𝑓 + 𝛿, от вектор-потенциала A. 

Легко убедиться, что оператор зарядового тока между ближайшими узлами 𝑓 и 𝑓 + 𝛿 

(здесь δ = +𝑥, +𝑦) в этом случае определяется выражением 

    𝒥௙,௙ାఋ =
−𝑖𝑒

ℏ
෍ 𝜂௟𝑡ఋ൫𝑐௙௟ఙ

ற 𝑐௙ାఋ,௟ఙ − 𝑐௙ାఋ,௟ఙ
ற 𝑐௙௟ఙ൯ + 𝜆ఙఋ𝑐௙௟ఙ

ற 𝑐௙ାఋ,௟ఙ̅ഥ + 𝜆ఙഥఋ𝑐௙ାఋ,௟ఙ̅ഥ
ற 𝑐௙,௟ఙ

௟ఙ

    (3) 

Отметим, что аналогичное выражение возникает в уравнении движения для оператора числа 

частиц на узле 𝑓 𝒩௙ = ∑ 𝑐௙௟஢
ற 𝑐௙௟஢௟஢  [9]. Видно, что в оператор тока вносят вклад не только 

обычные перескоки электронов между узлами решетки, но и перескоки с переворотом спина, 

индуцированные спин-орбитальной связью Рашбы. В дальнейшем, будем разделять эти два 

вклада и обозначать их как 𝒥௙,௙ାஔ
௧  и 𝒥௙,௙ାஔ

ఒ . 

Для вычисления термодинамического среднего от оператора тока используем 

преобразование Боголюбова для перехода к новым квазичастичным операторам α୨஢: 

                               𝛼௝ఙ = ෍ ቂ𝑢௝௙ఙ𝑐௙஺ఙ + 𝑣௝௙ఙ𝑐௙஻ఙ + 𝑤௝௙ఙ𝑐௙஺
ற + 𝑧௝௙ఙ𝑐௙஻ఙ

ற ቃ

௙

,                          (4) 

в представлении которых гамильтониан приобретает диагональный вид 

                                                              ℋ = ෍ 𝐸௝ఙ𝛼௝ఙ
ற

௝ఙ

𝛼௝ఙ + 𝐸଴.                                                     (5) 

Тогда 𝐽௙,௙ାఋ
௧ = 〈𝒥௙,௙ାఋ

௧ 〉, 𝐽௙,௙ାఋ
ఒ = 〈𝒥௙,௙ାఋ

ఒ 〉 определяются выражениями 

𝐽௙,௙ାஔ
௧ =

2𝑒

ℏ
𝑡ஔ ෍ Im

௝஢

൛𝑤௝௙
∗ 𝑤௝,௙ାஔ,஢ − 𝑧௝௙

∗ 𝑧௝,௙ାஔ,஢ − 

−൫𝑤௝௙஢ഥ
∗ 𝑤௝,௙ାஔ,஢ഥ − 𝑧௝௙஢

∗ 𝑧௝,௙ାஔ,஢ + 𝑢௝௙஢
∗ 𝑢௝,௙ାஔ,஢ − 𝑣௝௙஢ഥ

∗ 𝑣௝,௙ାஔ,஢ഥ൯𝑓 ൬
𝐸௝஢

𝑇
൰ൠ, 

𝐽௙,௙ା௫
ఒ = −

2𝑒

ℏ
𝜆 ෍ 𝜂ఙ  Im

௝ఙ

൛𝑤௝௙ఙ
∗ 𝑧௝,௙ା௫,ఙഥ + 𝑧௝௙ఙ

∗ 𝑤௝,௙ା௫,ఙഥ − 

−൫𝑧௝௙ఙ
∗ 𝑤௝,௙ା௫,ఙഥ − 𝑤௝௙ఙഥ

∗ 𝑧௝,௙ା௫,ఙ + 𝑢௝௙ఙ
∗ 𝑣௝,௙ା௫,ఙഥ − 𝑣௝௙ఙഥ

∗ 𝑢௝,௙ା௫,ఙ൯𝑓 ൬
𝐸௝ఙ

𝑇
൰ൠ, 

𝐽௙,௙ା௬
ఒ =

2𝑒

ℏ
𝜆 ෍ Re

௝ఙ

൛𝑤௝௙ఙ
∗ 𝑧௝,௙ା௬,ఙഥ + 𝑧௝௙ఙ

∗ 𝑤௝,௙ା௬,ఙഥ − 

                    −൫𝑤௝௙ఙഥ
∗ 𝑧௝,௙ା௬,ఙ + 𝑧௝௙ఙ

∗ 𝑤௝,௙ା௬,ఙഥ − 𝑢௝௙ఙ
∗ 𝑣௝,௙ା௬,ఙഥ − 𝑣௝௙ഥ

∗ 𝑢௝,௙ା௬,ఙ൯𝑓 ൬
𝐸௝ఙ

𝑇
൰ൠ.             (6) 

Здесь Re и Im обозначают действительные и мнимые части функций, 𝑓൫𝐸௝ఙ/𝑇൯ – функция 

распределения Ферми-Дирака. Суммирование ведется по положительным энергиям 𝐸௝ఙ ≥ 0. 
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Видно, что даже при нулевой температуре всегда существует вклад в ток (по сути за счет 

заполненных состояний с 𝐸௝ఙ < 0 в сверхпроводнике). 

Отметим, что в рамках формализма, изложенного в работе [15], можно получить 

закон сохранения заряда фермионов на узле: 

                                                      
∂𝑄௙

∂𝑡
+ ෍ ൫𝐽௙,௙ାஔ

௧ + 𝐽௙,௙ାஔ
஛ ൯

ஔୀ±௫,±௬

= 𝑆௙ ,                                       (7) 

где плотность заряда на узле f Q୤ есть по определению 

                      𝑄௙ =
𝑒

ℏ
෍ 𝑓

௝ఙ

൬
𝐸௝ఙ

𝑇
൰ ቂห𝑓஺௝ఙ൫𝑅௙ , 𝑡൯ห

ଶ
+ ห𝑓஻௝ఙഥ ൫𝑅௙ , 𝑡൯ห

ଶ
ቃ                                                   

+ 𝑓 ൬
−𝐸௝ఙ

𝑇
൰ ቂห𝑔஺௝ఙഥ ൫𝑅௙ , 𝑡൯ห

ଶ
+ ห𝑔஻௝ఙ൫𝑅௙ , 𝑡൯ห

ଶ
ቃ.                                                 (8) 

В рассматриваемом стационарном случае введенные функции связаны с коэффициентами 

преобразования Боголюбова 

𝑓஺௝ఙ൫𝑅௙ , 𝑡൯ = 𝑢௝௙ఙ𝑒ି௜ாೕ഑௧,    𝑓஻௝ఙഥ ൫𝑅௙ , 𝑡൯ = 𝑣௝௙ఙഥ 𝑒ି௜ாೕ഑௧, 

                                 𝑔஺௝ఙഥ൫𝑅௙ , 𝑡൯ = 𝑤௝௙ఙഥ 𝑒ି௜ாೕ഑௧ ,    𝑔஻௝ఙ൫𝑅௙ , 𝑡൯ = 𝑧௝௙ఙ𝑒ି௜ாೕ഑௧.                           (9) 

И 𝜕𝑄௙/𝜕𝑡 = 0. Источник заряда 𝑆௙ в правой части уравнения (7) определяется по формуле: 

                     𝑆௙ =
2𝑒

ℏ
෍ η஢Im൛Δ଴(𝑓)൫𝑤௝௙஢ഥ

∗ 𝑢௝௙஢ − 𝑧௝௙஢
∗ 𝑣௝௙஢ഥ൯ൟ ൤1 − 2𝑓 ൬

𝐸௝஢

𝑇
൰൨

௝஢

.                   (10) 

Видно, что аномальные слагаемые гамильтониана с амплитудой Δ଴(𝑓) выступают в качестве 

источника заряда фермионов на узле. Член 𝑆௙  дает ненулевой вклад при наличии вихря, 

когда Δ଴(𝑓)  и коэффициенты Боголюбова являются комплексными величинами. В этом 

случае, в стационарном режиме, он компенсируется с токами J୤,୤±ஔ
୲,஛ , выходящими из узла 𝑓. 

Если же Δ଴(𝑓) – постоянная величина на решетке, то 𝑆௙ = 0 для каждого узла и тока также 

бы не было. Отметим, что здесь не рассматриваются эффекты на границе между системой в 

нормальной фазе и сверхпроводником, индуцирующим куперовские пары, когда Δ଴(𝑓) также 

становится неоднородной. 

3. Результаты для h=0 и обсуждение 

В качестве начального приближения можно пренебречь влиянием зеемановского 

расщепления h. Тогда энергетический спектр системы вырожден по проекции спинового 

момента 𝐸௝ఙ = 𝐸௝ఙഥ ≡ 𝐸௝ . Также можно убедиться, что в этом случае и при Δε =  0 

выполняются соотношения для коэффициентов преобразования Боголюбова: 𝑢௝௙ఙ
∗ 𝑢௝௙ାఋఙ =

−𝑣௝௙ఙ
∗ 𝑣௝௙ାఋఙ , 𝑤௝௙ఙ

∗ 𝑤௝௙ାఋఙ = −𝑧௝௙ఙ
∗ 𝑧௝௙ାఋఙ , 𝑢௝௙ఙ

∗ 𝑣௝௙ାఋఙഥ = 𝑣௝௙ఙ
∗ 𝑢௝௙ାఋఙഥ , 𝑤௝௙ఙ

∗ 𝑧௝௙ାఋఙഥ = 𝑧௝௙ఙ
∗ 𝑤௝௙ାఋఙഥ  
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(коэффициенты 𝑢௝௙ఙ  и 𝑣௝௙ఙ  отличаются только фазовым множителем, также как и 

коэффициенты 𝑤௝௙ఙ и 𝑧௝௙ఙ). Тогда выражения для токов существенно упростятся 

𝐽௙,௙ାఋ
௧ =

2𝑒

ℏ
𝑡ఋ ෍ 2

௝ఙ

Im ൜𝑤௝௙ఙ
∗ 𝑤௝,௙ାఋ,ఙ − ൫𝑤௝௙ఙ

∗ 𝑤௝,௙ାఋ,ఙ + 𝑢௝௙ఙ
∗ 𝑢௝,௙ାఋ,ఙ൯𝑓 ൬

𝐸௝

𝑇
൰ൠ,        (11) 

𝐽௙,௙ା௫
ఒ = −

2𝑒

ℏ
𝜆 ෍ 2

௝ఙ

𝜂ఙIm ൜𝑤௝௙ఙ
∗ 𝑧௝,௙ା௫,ఙഥ − ൫𝑤௝௙ఙ

∗ 𝑧௝,௙ା௫,ఙഥ + 𝑢௝௙ఙ
∗ 𝑣௝,௙ା௫,ఙഥ൯𝑓 ൬

𝐸௝

𝑇
൰ൠ     (12) 

𝐽௙,௙ା௬
஛ = −

2𝑒

ℏ
λ ෍ Re ൜−𝑤௝௙஢

∗ 𝑧௝,௙ା௬஢ഥ + ൫𝑤௝௙஢
∗ 𝑧௝,௙ା௬,஢ഥ − 𝑢௝௙஢

∗ 𝑣௝,௙ା௬,஢ഥ൯𝑓 ൬
𝐸௝

𝑇
൰ൠ

௝஢

.         (13) 

Для дальнейшего составим вектора токов 𝐽௙
௧ = ൫𝐽௙,௙ା௫

௧ , 𝐽௙,௙ା௬
௧ ൯ , 𝐽௙

ఒ = ൫𝐽௙,௙ା௫
ఒ , 𝐽௙,௙ା௬

ఒ ൯  и 

суммарный вектор 𝐽௙ = 𝐽௙
௧ + 𝐽௙

ఒ, который и характеризует спонтанный вихревой сверхток. 

Рассмотрим первоначально случай без спин-орбитального взаимодействия, λ =  0 , 

когда ток обусловлен только перескоками электронов между ближайшими соседями с 

параметром 𝑡௫ = 𝑡௬ ≡ 𝑡, т.е. определяется вектором 𝐉௙
௧ . Как отмечалось выше, в отсутствии 

вихря в модели нет источников для возникновения спонтанного сверхтока. Действительно, 

если сверхпроводящий параметр порядка действителен (комплексность его амплитуды 

может быть устранена градиентным преобразованием), то и коэффициенты преобразования 

Боголюбова действительны, в результате чего ток в (11) строго обращается в нуль. При 

наличии вихря, как известно [17], возникает спонтанный сверхток 𝐽௙ ∼ −grad 𝜙ఋ(𝑓) , 

который циркулирует вокруг ядра вихря по часовой стрелке для 𝑙௩ = +1 и против часовой 

для антивихря ( 𝑙௩ = −1 ), если смотреть на решетку сверху. Индуцированный вихрем 

сверхток спадает как 1/𝑟 с ростом расстояния за пределами ядра вихря и уменьшается с 

ростом температуры (не только за счет подавления амплитуды Δ଴, но и при рассмотрении 

только температурных поправок в (11)). Выражение (11) в полной мере описывает данное 

поведение. Отметим также, что суммарный ток в решетке равен нулю: ∑ 𝐽௙,௙ାఋ
௧

௙ = 0. 

На рис. 1а стрелками показан вектор 𝐉௙
௧  в узлах решетки с числом узлов Nୱ = 39 вдоль 

x и y направлений, а цветом его модуль для параметров λ =  3/4t, Δ଴ = 0.5𝑡 , 𝜇 =  −0.6t, 

Δε =  0, T = 0. Отметим, что за счет спин-орбитального взаимодействия в модели величина 

сверхпроводящей щели оказывается перенормированной и составляет ඥμଶ + Δ଴
ଶ. Ранее было 

показано [12], что в данной модели при Δ𝜀 =  0 (т.е. и для рассматриваемых параметров) 

реализуются моды, локализованные в ядре вихря, с нулевой энергией возбуждения (нулевые 

вихревые моды). Также при энергии меньшей, но сравнимой с величиной сверхпроводящей 

щели формируются  состояния, локализованные на краях решетки. В ограниченной решетке 

энергия нулевых вихревых мод есть малая, но ненулевая величина (0ା) за счет размерных 
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эффектов. Поэтому при температуре 𝑇 ≪ 𝐸ଵఙ → 0ା, где 𝐸ଵఙ  – наименьшая энергия спектра 

гамильтониана (5), данные уровни не заполняются. 

   

Рис. 1. а) Вектор 𝐉௙
௧  в узлах квадратной решетки, определяющий вклад в сверхток от 

перескоков электронов между узлами при наличии вихря в центре решетки для параметров 

𝜆 =  3/4𝑡, Δ଴ = 0.5𝑡, 𝜇 =  −0.6𝑡, T = 0, 𝑁௦ = 39. Стрелками показано направление сверхтока, 

цветом – его величина в единицах et/ℏ . б) Вклад в сверхток 𝐉௙
ఒ  от спин-орбитального 

взаимодействия при тех же параметрах. 

При учете спин-орбитального взаимодействия вклад в сверхток, определяемый 𝐽௙,௙ାஔ
஛  

также имеет отмеченные для 𝐉௙
௧  особенности. Направления и величины вектора 𝐉௙

ఒ на узлах 

решетки представлены на рис.~1б для тех же параметров, что и на рис.~1a. Видно, что 𝐉௙
ఒ 

имеет сравнимую величину с 𝐉௙
௧ , если параметр спин-орбитальной связи λ ∼ 𝑡 , и то же 

направление вращения вокруг центра вихря. Таким образом, перескоки электронов, 

индуцированные спин-орбитальным взаимодействием, вносят вклад в суммарный сверхток 

сравнимый с вкладом от обычных перескоков между узлами в приближении сильной связи. 

Зависимость функции S୤, определяемой из (10) и характеризующей источник заряда, 

ненулевой для сверхпроводящего параметра порядка с вихревой неоднородностью, от 

номера узла решетки представлена на рис. 2 для тех же параметров, которые использовались 

при описании рис. 1 выше. Видно, что наибольшие значения функция принимает на 

границах решетки. Это связано с тем, что границы также играют роль неоднородностей в 

системе. Например, при приближении к границе перестает выполняться закон спадания 1/𝑟 

для 𝐉௙
௧  и 𝐉௙

ఒ. Для узлов вдали от границ S୤ приобретает существенно меньшие значения, хотя и 

ненулевые (за исключением узлов fௗ  строго на диагоналях решетки, для которых S୤೏
= 0). 
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Согласно уравнению (7) для стационарного случая источник заряда компенсируется токами, 

так что 𝑆௙ = ∑ ൫𝐽௙,௙ାஔ
௧ + 𝐽௙,௙ାஔ

஛ ൯ஔୀ±௫,±௬ . Рассмотрим подробнее сумму токов в правой части 

этого выражения. 𝐽௙,௙ିஔ
௧,ఒ  хоть и обладают противоположным знаком по сравнению с 𝐽௙,௙ାஔ

௧,ఒ , 

соответственно, но не равны по модулю для выбранного узла 𝑓  (при этом справедливо 

равенство, связанное с перестановкой индексов узлов 𝐽௙,௙ାஔ
௧,ఒ = −𝐽௙ାஔ,௙

௧,ఒ . Поэтому суммы 

𝐽௙,௙ାஔ
௧ + 𝐽௙,௙ିஔ

௧  и 𝐽௙,௙ାஔ
 ఒ + 𝐽௙,௙ିஔ

 ఒ  для δ =  +𝑥,   +𝑦  приобретают максимальные по модулю 

значения ∼ 10ିଶ et/ℏ  на узлах вблизи центра вихря и вблизи границ. Однако суммы с 

δ =  +𝑥  и с δ =  +𝑦  сравнимы по модулю, но противоположны по знаку для узлов не 

близких к границам решетки, что и приводит к малым значениям суммы токов и источника 

заряда для таких узлов, как показано на рис. 2. 

Токи 𝐉௙
௧  и 𝐉௙

ఒ  имеют различные зависимости от температуры. При рассмотренных 

параметрах |𝐉௙
ఒ| уменьшается быстрее с ростом температуры, чем |𝐉௙

௧ |, хотя при 𝑇 → 0 ห𝐽௙
஛ห >

ห𝐽௙
௧ ห , как видно из рис. 1. В результате вклад в суммарный сверхток от 𝐉௙

௧  становится 

доминирующим с ростом температуры. Отметим, что при заполнении вихревых нулевых мод (с 

энергией 0ା) сверхток практически не изменяется. Данный результат имеет аналогию с тем, что 

заполнение нулевых майорановских мод в моделях цепочки Китаева и сверхпроводящей 

нанопроволоки не влияет на распределения электронной и спиновой плотностей [8, 16]. Смена 

доминирующего вклада в сверхток с 𝐉௙
ఒ на 𝐉௙

௧  происходит при заполнении с ростом температуры 

следующих по величине энергии связанных состояний – состояний типа Кароли-де Жена-

Матрикона (КдЖМ) [18], также локализованных в ядре вихря. 

   

Рис. 2. Распределение источника заряда S୤ по узлам решетки. Параметры те же, что и на рис. 1. 
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Представленные для 𝐉௙
ఒ результаты не зависят от знака параметра спин-орбитального 

взаимодействия, однако, очевидно, что определяются его величиной и 𝐉௙
ఒ вносит заметный 

вклад в суммарный сверхток, если 𝜆 сравнимо по величине c параметром t. При увеличении 

h, зеемановского расщепления в магнитном поле, величины сверхтоков, определяемые 

теперь из формул (6), слабо уменьшаются даже при постоянном Δ଴ , но качественно 

результаты остаются прежними. 

Отметим, что величина полученного сверхтока при 𝑡 ∼ 1 мэВ имеет порядок 1 нА в 

пределе нулевой температуры. При этом в реальных системах энергия возбуждения 

состояний КдЖМ довольна мала (рекордные значения доходят до 0.1 мэВ). Поэтому и 

температуры смены доминирующего вклада в сверхток должны быть малы (до 1 К). 

Также дополнительное влияние на сверхток окажет подавление наведенной 

сверхпроводимости в структуре с ростом температуры и магнитного поля. Рассмотрение 

этих вопросов выходит за рамки настоящей работы. 

4. Заключение 

В работе определен вклад от спин-орбитального взаимодействия Рашбы в спонтанный 

сверхток, индуцируемый вихрем в двумерном сверхпроводнике. Показано, что в 

рассмотренной модели этот вклад имеет то же направление вращения вокруг центра вихря, 

что и вклад в вихревой сверхток, связанный с обычными прыжками электронов между 

узлами решетки в приближении сильной связи. При этом оба вклада сравнимы по величине, 

если амплитуды перескоков с переворотом спина, вызванных спин-орбитальной связью, и 

перескоков с сохранением проекции спинового момента есть величины одного порядка. 

Показано, что с ростом температуры при заполнении подщелевых состояний Кароли-де 

Жена-Матрикона может происходить смена доминирующего вклада в суммарный сверхток. 

Автор благодарит М.С. Шустина и С.В. Аксенова за обсуждение работы, а также 
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