
Краткие сообщения по физике ФИАН номер 2, 2026 г.

УДК 539.124.6; 539.1.074.55

ДОПЛЕРОВСКОЕ УШИРЕНИЕ АННИГИЛЯЦИОННОЙ

ЛИНИИ В ДОНОРНОМ И АКЦЕПТОРНОМ

ИНТЕРКАЛИРОВАННОМ СОЕДИНЕНИИ ГРАФИТА
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Получены спектры доплеровского уширения аннигиляци-
онной линии чистого и интеркалированного калием (K)
и хлоридом железа (FeCl3) высокоориентированного пи-
ролитического графита. Показано, что в интеркалиро-
ванных образцах ширина аннигиляционного пика больше,
чем в случае чистого графита. В классическом случае
наличие свободных объемов больших размеров в исследу-
емом образце приводит к уменьшению ширины анниги-
ляционной линии, однако в случае с интеркалированным
графитом наблюдается обратное поведение – увеличение
ширины линии. Обсуждаются возможные причины, при-
водящие к подобного рода поведению.

Ключевые слова: доплеровское уширение аннигиляционной линии, позитроны, вы-
сокоориентированный пиролитический графит, интеркаляция, перенос заряда (“charge
transfer”).

Введение. В настоящее время позитронная аннигиляционная спектроскопия (ПАС)
является одним из эффективных и неразрушающих методов обнаружения вакансий,
дефектов свободного объема и отрицательно заряженных дефектов в металлах, полу-
проводниках и полимерах [1, 2]. ПАС включает в себя три основных метода, которые
зачастую комбинируются в зависимости от поставленных задач. К этим методам от-
носятся: временное распределение аннигиляционных фотонов (ВРАФ) [3], угловое рас-
пределение аннигиляционных фотонов (УРАФ) [4] и доплеровское уширение аннигиля-
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ционной линии (ДУАЛ) [5–7]. Метод ДУАЛ имеет невысокое разрешение по сравнению
с ВРАФ и УРАФ, однако экспериментальная реализация ДУАЛ гораздо проще, так
как отпадает необходимость использования дорогостоящей наносекундной электрони-
ки, сложной механической системы для фиксации угла разлета γ-квантов и мощного
источника позитронов. В методе доплеровского уширения напрямую регистрируется
линия аннигиляции 511 кэВ, уширенная за счет доплеровского сдвига, обусловленного
полным импульсом пары аннигиляции позитрон-электрон. Информацию об импульсном
распределении электронов в исследуемом материале можно выделить из анализа допле-
ровского спектра, используя S (shape)- и W (wing)-параметры формы линии, характе-
ризующие процессы аннигиляции позитронов с валентными и остовными электронами,
соответственно, [8]. Параметр S определяется как относительная площадь центральной
части спектра распределения энергии, тогда как параметрW выражает относительный
вклад хвостов в общую площадь пика (рис. 1).

Рис. 1: Спектр доплеровского уширения аннигиляционной линии с указанием S- и W -
параметров.

Валентные электроны имеют низкие значения импульса по сравнению с остовны-
ми, поэтому, когда аннигиляция позитрона происходит с валентным (или свободным)
электроном, наблюдается рост S-параметра. В случае аннигиляции позитрона с остов-
ными электронами имеет место увеличение W -параметра. Вероятность аннигиляции
позитронов с валентными электронами возрастает в структурах с вакансионными де-
фектами. Для бездефектной структуры наблюдается снижение S-параметра и увели-
чение параметра W , приводящее к уширению аннигиляционного пика. Таким образом,
определяя величины S- и W -параметров, можно получить распределение дефектов по
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глубине и характеристику дефектов свободного объема. ДУАЛ помимо информации о
дефектах может дать полезные сведения об электронной структуре поверхности образ-
ца, например, значение уровня Ферми, число свободных электронов и т. д. Интересно,
что форма линии аннигиляции 511 кэВ различна для каждого элемента, в частности,
остовные электроны сохраняют свои атомные характеристики и в твёрдом теле [9]. Это
позволяет использовать сигнал от аннигиляции позитрона с остовным электроном для
химической селекции атомов. Способность идентифицировать не только тип дефек-
та свободного объёма, но и атомы, окружающие дефект, делает метод ДУАЛ одним
из перспективных инструментов для исследования материалов, в которых необходимо
определять детальную атомную структуру комплексов вакансия–примесь. Примером
таких материалов могут служить полупроводники.

В данной работе обсуждается влияние донорных и акцепторных интеркалятов на
спектр ДУАЛ высокоориентированного пиролитического графита (ВОПГ). Объясня-
ются особенности процесса аннигиляции позитронов, приводящие к изменению формы
аннигиляционной линии ВОПГ при его интеркаляции.

Эксперимент. Объектами исследования являются чистый ВОПГ и его интеркалиро-
ванные калием (K) и хлоридом железа (FeCl3) соединения. Интеркалированные соеди-
нения графита (ИСГ) образуются путем внедрения атомных или молекулярных слоев
различных химических веществ, называемых промежуточным веществом, между слоя-
ми в графитовом материале-хозяине [10]. Внедряемые в межплоскостные промежутки
графита металлы и молекулы могут являться донорами или акцепторами электронов.
Это приводит к тому, что интеркалирование различными химическими элементами мо-
жет влиять на концентрацию свободных носителей в графите. В результате, ИСГ могут
демонстрировать различные электронные, тепловые и магнитные свойства. Например,
ИСГ с калием и кальцием проявляют при низких температурах свойства сверхпроводи-
мости. Гетероструктуры на основе интеркалированных графита и многослойного гра-
фена представляют собой перспективную материальную платформу для продвижения
достижений в области высокопроизводительных фотодетекторов, датчиков изображе-
ний, устройств ночного видения и фотоэлектрических элементов [11]. Таким образом,
исследования свойств ИСГ представляются на сегодняшний день актуальными и пер-
спективными.

Интеркаляция ВОПГ калием и хлоридом железа была проведена с использованием
двухзонного метода. Подробное описание экспериментов по двухзонной интеркаляции
ВОПГ приведено в работе [12]. На рис. 2 представлены электронные микрофотографии
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срезов чистого и интеркалированного образцов ВОПГ. Размер чистого ВОПГ составля-
ет 10×10×0.4 мм3. После интеркаляции толщина образцов возрастает.

Рис. 2: Электронные микрофотографии срезов чистого образца ВОПГ (слева) и образ-
ца, интеркалированного FeCl3 (справа). На правом рисунке видно расслоение ВОПГ,
что говорит о высокой эффективности проведенного эксперимента по интеркаляции.

После синтеза ИСГ были проведены эксперименты по определению ступени интер-
каляции образца. Для этого был использован рамановский микроскоп InVia Renishaw
с длиной волны лазера λ = 514 нм. Процедура определения ступени интеркалирован-
ных соединений проводилась путем анализа положений G− и G+ пиков и отношения
их интенсивностей [13]. Более подробно с данной методикой можно ознакомиться в [12].
Анализ рамановских спектров показал образование ИСГ с калием и хлоридом железа
шестой и третьей ступени, соответственно. То есть атомы калия занимают межплос-
костное пространство в графите через каждые шесть слоев графена, а FeCl3 занимает
пространство через три графеновых слоя.

Для измерения энергии гамма-квантов, появляющихся в результате аннигиляции
электрон-позитронной пары в исследуемых образцах, использовался полупроводнико-
вый детектор (ППД) из германия высокой очистки (HPGe) с кристаллом толщиной 3 см
[14]. Паспортное значение энергетического разрешения детектора составляет 1.9 кэВ
(FWHM) при энергии 1332 кэВ (линия 60Co). Схема измерительной установки показа-
на на рис. 3.
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Рис. 3: Общий вид низкофоновой измерительной установки: 1 – ППД (HPGe), 2 –
свинцовая защита толщиной 10 см, 3 – дьюар с жидким азотом.

В качестве источника позитронов использовался изотоп 22Na. Исследуемый образец
помещался между детектором и позитронным источником. Расстояние от детектора
до образца, на поверхности которого размещался позитронный источник, составляло
10 см. Чтобы избежать попадания на детектор гамма-квантов, образующихся при ан-
нигиляции позитронов с материалом защиты детектора, был использован свинцовый
коллиматор толщиной 10 см и каналом диаметром 0.4 см. Подробная схема экспери-
мента представлена на рис. 4.

Результаты и обсуждение. Для каждого образца время измерений составляло один
час. На рис. 5 представлены спектры для различных образцов, состоящие из аннигиля-
ционной линии 511 кэВ и линии 1274.5 кэВ от гамма-квантов, испускаемых при распаде
источника Na-22. Также в левой части спектра можно наблюдать линии низкой интен-
сивности, характерные для свинца.

Несмотря на то, что схема эксперимента предполагает низкий уровень фоновых со-
бытий, в полученных спектрах наблюдается фоновая подложка (рис. 6), которую необ-
ходимо учитывать при аппроксимации экспериментальных данных.

Спектры ДУАЛ, полученные для чистого и интеркалированного калием и хлоридом
железа ВОПГ, приведены на рис. 7.
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Рис. 4: Схема измерительной системы: 1 – германиевый ППД, 2 – свинцовый колли-
матор, 3 – позитронный источник 22Na, 4 – исследуемый образец.

Рис. 5: Энергетические спектры, полученные при облучении образцов позитронами от
радиоактивного источника Na-22.

Величина уширения аннигиляционных пиков определялась (УШАП) как разница
между полушириной кривой на полувысоте (FWHM), найденной методом аппрокси-
мации экспериментальных данных гауссовой функцией [15] и расчетной FWHM, опре-
деленной из FWHM для линий 84.9 кэВ и 1274.5 кэВ. Значения УШАП линии для
различных образцов в сравнении с FWHM для линий 84.6, 511 и 1274.5 кэВ приведены
в табл. 1.
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Рис. 6: Фрагмент энергетического спектра образцов, облученных позитронами от ра-
диоактивного источника Na-22. Слева от аннигиляционного пика 511 кэВ наблюдает-
ся фоновая подложка, связанная с различными процессами рассеяния, а также собы-
тиями от трехфотонной аннигиляции о-Ps.

Рис. 7: Форма пиков полного поглощения аннигиляционных гамма-квантов: сплошная
кривая – чистый ВОПГ, красная штриховая линия – интеркалированный ка-
лием ВОПГ, синяя штрихпунктирная линия – интеркалированный хлоридом железа
ВОПГ.
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Рассчитанное для энергии 511 кэВ разрешение составило 1.175 кэВ. Энергетическое
разрешение определялось по формуле: R = k

√
E + c, где R – FWHM, E – энергия

в кэВ, k и c – константы, определенные из FWHM линий 84.6 и 1274.5 кэВ. Таким
образом, можно сказать, что наблюдаемое нами уширение аннигиляционного пика для
различных образцов не является результатом недостаточного разрешения детектора.

Т а б л и ц а 1
Значения FWHM для чистого и интеркалированного калием и хлоридом железа

ВОПГ

Линия
Исследуемый 84.9 кэВ 1274.5 кэВ 511 кэВ УШАП, кэВ

образец рассчетная измеренная
FWHM, кэВ

Чистый ВОПГ 0.79±0.02 1.43±0.01 1.12 2.80 1.68

Интеркалированный 0.82±0.02 1.46±0.02 1.16 3.03 1.87
калием ВОПГ

Интеркалированный 0.80±0.02 1.49±0.02 1.18 3.17 1.99
хлоридом железа

ВОПГ

Для объяснения полученных результатов необходимо уточнить, что калий являет-
ся донорным интеркалятом, т. е. происходит перенос отрицательного заряда (“charge
transfer”) от калия к графеновым плоскостям в ИСГ. В случае хлорида железа име-
ет место обратный эффект, приводящий к сосредоточению электронной плотности в
ИСГ вблизи молекулы FeCl3. Напомним, что величина уширения аннигиляционного
пика зависит от среднего размера свободного объема в исследуемом веществе. В этом
контексте стоит привести значения межплоскостных расстояний dc в чистом и интерка-
лированных образцах ВОПГ, которые по своей сути являются свободными объемами,
приводящими к увеличению S-параметра, т. е. сужению аннигиляционного пика вблизи
энергии 511 кэВ. В чистом ВОПГ dc = 3.35 Å, для ВОПГ, интеркалированного ка-
лием и хлоридом железа, dc = 5.40 Å и dc = 9.36 Å, соответственно, [10]. Величина
свободного объема в интеркалированных образцах больше, чем в чистом ВОПГ, и сле-
довало ожидать сужения аннигиляционной линии в зависимости от межплоскостного
расстояния. Однако экспериментальные результаты показывают обратное. Объяснение
наблюдаемому эффекту в ИСГ с калием можно дать, если принять во внимание то, что
позитроны испытывают периодический отталкивающий потенциал, центрированный на
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ионных остовах [16]. Атомы калия, оказываясь в межплоскостных промежутках ВОПГ,
образуют положительные ионы из-за переноса заряда. Испытывающие кулоновское от-
талкивание от ионов калия позитроны вынуждены термализоваться и аннигилировать
в углеродных слоях, где возрастает вероятность аннигиляции с высокоимпульсными
электронами. Поэтому значение FWHM интеркалированного калием ВОПГ оказывает-
ся больше по сравнению с чистым образцом. Подобное поведение наблюдалось в работе
[17], где адсорбция водорода интеркалированным графитом приводит к уширению ан-
нигиляционной линии. Причиной этому являлось вытеснение позитронов водородом из
межплоскостного пространства к углеродным слоям. Таким образом, метод ДУАЛ не
только является мощным инструментом исследования различных несовершенств струк-
туры, но и может быть полезным при изучении распределения заряда в интеркалиро-
ванных слоистых материалах.

Как показано выше, для интеркалированного хлоридом железа ВОПГ наблюдается
самое высокое значение FWHM. Хлорид железа является акцепторным интеркалятом,
сосредотачивающим электронную плотность вблизи себя, тем самым увеличивая веро-
ятность захвата и аннигиляции позитронов в межплоскостном пространстве ВОПГ и
на самих молекулах FeCl3. Напомним также, что в ИСГ с хлоридом железа существует
достаточно большое межплоскостное расстояние, являющееся хорошей ловушкой пози-
тронов. В связи с вышесказанным, следовало ожидать, что основная часть позитронов
будет аннигилировать в межплоскостном пространстве либо с низкоимпульсными сво-
бодными электронами и вносить значительный вклад в S-параметр формы ДУАЛ, либо
с высокоимпульсными электронами интеркалята, внося вклад вW -параметр спектра. В
недавних исследованиях, посвященных доплеровской спектроскопии полимеров, было
обнаружено аналогичное поведение формы аннигиляционной линии, а именно: при уве-
личении размера свободного объема имело место увеличение величины FWHM [18]. Ру-
ководствуясь выводами упомянутой работы, уширение аннигиляционного пика в ИСГ
с хлоридом железа можно объяснить следующим образом: из-за большого значения
dc = 9.36 Å и зарядовой нейтральности атома ортопозитрония (o-Ps), образующегося в
процессе термализации позитрона, способность o-Ps захватывать свободно движущий-
ся электрон уменьшается. Поэтому в процессе аннигиляции вынуждены участвовать
остовные электроны как углерода, так и интеркалята, имеющие высокие значения им-
пульсов. Кроме того, молекулы FeCl3 являются ловушками для позитронов, и прямая
аннигиляция на высокоимпульсных (по сравнению с электронами углерода) электро-
нах тяжелых атомов Fe и Cl будет вносить вклад в уширение аннигиляционной линии.
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Таким образом, в случае интеркалированных материалов и гетероструктур, величина
FWHM не всегда корректно показывает степень дефектности исследуемой структуры.
Для однозначного определения наличия и размера пустот, свободных объемов и кон-
центрации вакансионных дефектов в подобного рода материалах необходимо совместно
с ДУАЛ использовать метод ВРАФ.

Выводы. Методом ДУАЛ проведено исследование чистого и интеркалированного ка-
лием (K) и хлоридом железа (FeCl3) высокоориентированного пиролитического графи-
та. В интеркалированных образцах величина уширения аннигиляционного пика боль-
ше, чем в чистом ВОПГ. В случае ИСГ с калием, уширение обусловлено кулоновским
отталкиванием позитронов от положительных ионов калия, приводящим к тому, что
позитроны вынуждены термализоваться в углеродных слоях, где увеличивается ве-
роятность аннигиляции с высокоимпульсными электронами. Данный вывод говорит
о возможности использования метода ДУАЛ для исследования распределения заряда
в интеркалированных слоистых углеродных материалах. Уширение аннигиляционного
пика в ИСГ с хлоридом железа можно объяснить тем, что из-за большого значения
межплоскостного расстояния соединения и зарядовой нейтральности o-Ps, способность
o-Ps захватывать свободно движущийся электрон уменьшается, вследствие чего в ан-
нигиляции вынуждены участвовать высокоимпульсные остовные электроны углерода и
интеркалята. Вклад в уширение аннигиляционной линии ИСГ с хлоридом железа так-
же дает прямая аннигиляция позитронов с высокоимпульсными электронами тяжелых
элементов Fe и Cl. Поэтому в слоистых интеркалированных структурах и материалах
с примесями тяжелых элементов величина FWHM не всегда корректно указывает на
наличие и размеры дефектов свободного объема по сравнению с чистыми структурами,
что требует совместного использования ДУАЛ с ВРАФ.

Исследование выполнено за счет гранта Российского научного фонда (проект № 24-
22-20102).

Авторы данной работы заявляют, что у них нет конфликта интересов.
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