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В работе представлены создание и экспериментальные испытания

мелкомасштабного макета тороидальной катушки сферического

токамака и системы для регистрации трёхкомпонентных маг-

нитных полей. Основной целью исследования является разработ-

ка инструментальной базы для изучения влияния геометрических

особенностей непрерывного тороидального соленоида на процессы

удержания высокотемпературной плазмы. Макет тороидальной

катушки для токамака MEPhIST-1 масштаба 1:3 был изготовлен

с возможностью модульной сборки и установки измерительной

аппаратуры в различных полоидальных сечениях. Для измерения

магнитного поля разработана печатная плата, содержащая мас-

сив цифровых датчиков Холла, встроенные микроконтроллеры для

синхронизации опроса и автономный сбор данных в реальном вре-

мени. Архитектура системы ориентирована на регистрацию ма-

лых рассеянных вертикальных и радиальных полей на фоне большо-

го тороидального поля. Созданный комплекс был испытан при по-

стоянном токе через катушку. Первичные измерения подтвердили

корректную регистрацию компонент магнитного поля. Несмотря

на влияние шумов при малых токах, при повышении тока система

зафиксировала устойчивые распределения, сопоставимые с расчёт-

ными оценками.
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Введение. Тороидальное магнитное поле является главной удерживающей силой в
установках по изучению вопросов управляемого термоядерного синтеза. Увеличение ам-
плитуды тороидального поля приводит к улучшению удержания и увеличению термо-
ядерной мощности установки [1]. Однако неточности, допущенные при изготовлении и
монтаже тороидальных катушек, приводят к возникновению рассеянных вертикальных
и радиальных полей, которые являются причиной возникновения неустойчивостей [2]
и образования запертых частиц [3]. Эти факторы значительно ухудшают основные па-
раметры плазмы: длительность импульса, ток, плотность и температуру плазмы [4, 5].

На данный момент на стадии проектирования находится токамак MEPhIST-1, улуч-
шенная версия токамака MEPhIST-0 [6]. Кроме этого, обсуждается вопрос выбора си-
стемы тороидального магнитного поля для установки. Одним из возможных вариантов
предлагается идея непрерывного тороидального соленоида (НТС) [7], в котором каж-
дый виток плавно переходит в другой на внутреннем обходе. Данная концепция исполь-
зовалась на токамаках ST-40 [8], GLAST-III [9] и MEPhIST-0 [10]. Один из возможных
вариантов – изготовление НТС из высокотемпературных сверхпроводников [11]. Ис-
пользование данных материалов позволит достигать тороидального магнитного поля
вплоть до 1.5 Тл при температуре сверхпроводника 21.1 К [12].

Для оценки влияния таких факторов обычно используются численные расчеты по
определению магнитных полей [13–15], создаваемых тороидальными катушками. Од-
нако в случае НТС рассеянные поля возникают не только за счет неточностей, до-
пущенных при монтаже, но и в результате наклона тороидальной обмотки. По этой
причине для оценки неприятных факторов от тороидального соленоида для токамака
MEPhIST-1 была предложена экспериментальная методика для определения магнитной
конфигурации от тороидальной катушки в виде НТС. Экспериментальное определение
магнитных полей позволит не только верифицировать расчеты, но и оценить влияние
неточностей, допущенных при монтаже катушки, на магнитные поля.

Данная работа посвящена описанию экспериментальной установки по измерению
магнитных полей от макета НТС. В первой секции обсуждается мелкомасштабный ма-
кет (1:3) тороидальной катушки токамака MEPhIST-1. Во второй секции приведено
описание платы датчиков Холла для измерения магнитных полей и сбора данных. В
последней секции статьи приведены первые результаты измерений магнитной конфи-
гурации мелкомасштабного макета тороидальной катушки токамака MEPhIST-1.

Мелкомасштабный макет тороидальной катушки токамака MEPhIST-1. Для
оценки магнитных полей в области горения плазменного разряда токамака был спро-
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ектирован и создан мелкомасштабный макет НТС токамака MEPhIST-1. Сечение торо-
идального соленоида было выбрано из результатов работы [11]. Макет состоит из двух
куполов и основания, напечатанных на 3D принтере с пазами под медный провод. На
рис. 1 продемонстрированы модель мелкомасштабного макета НТС (рис. 1(а)) и со-
бранный макет (рис. 1(б)), с намотанным на него медным проводом МГ 50. Намотка
провода определяется условием минимизации вертикальных и радиальных полей в об-
ласти внутри катушки. Подробнее о выборе линии намотки говорится в работе [7]. Для
выравнивания медного провода на внутреннем диаметре используется внутренний ци-
линдр с пазами для медного провода (рис. 1(в)). Вся конструкция является разборной
и позволяет менять конфигурацию эксперимента в зависимости от потребностей.

Рис. 1: (а) модель мелкомасштабного НТС, зеленым цветом изображены кассеты с
датчиком, коричневым цветом – медный провод; (б) собранная модель с намотанным
медным проводом; (в) внутренний цилиндр, используемый для центрирования медного
провода c пазами для правильной намотки.

Спроектированное устройство позволяет проводить измерения магнитных полей
в 4 полоидальных сечениях, соответствующих различным тороидальным углам ϕ =

0; 7.5; 12.5; 22.5◦. Такое расположение позволяет определять распределение гофрировки
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магнитного поля в вертикальном и радиальном направлениях. При этом кассету, рас-
положенную в полоидальном сечении ϕ = 0, можно вытащить без разбирания всего
макета, что обеспечивает гибкость при измерении рассеянных вертикальных и ради-
альных полей. Также имеются крепления для расположения кассеты в горизонтальной
плоскости макета.

Плата регистрации и сбора данных о магнитных полях на основе датчиков Хол-
ла. Для регистрации магнитных полей макета НТС была разработана печатная плата,
представляющая собой 2D массив из трехкомпонентных цифровых датчиков Холла и
микроконтроллеров для управления и регистрации данных. Массив состоит из 4 датчи-
ков, расположенных в ширину, и 9 датчиков, расположенных в высоту, т. е. 36 датчиков
Холла в сумме. Данные собираются в оперативную память (внутреннюю SRAM) “ведо-
мых” микроконтроллеров STM32F412RGT6. После завершения записи данные с каждо-
го “ведомого” микроконтроллера поочередно собираются ’“ведущим” STM32F412RGT6
и записываются на flash-носитель. Триггер запуска передается в виде фронта электриче-
ского импульса “ведущему” микроконтроллеру, который затем раздает его всем осталь-
ным. Основные параметры используемого трехкомпонентного датчика Холла TLI493D-
A2B6 представлены в табл. 1. Каждая отдельная микросхема датчика Холла питается
от регулятора напряжения MCP1700T-3302E/TT, что позволяет добиться шума в из-
мерениях порядка пары значащих бит и не превышает 0.3 мТл.

Т а б л и ц а 1
Основные параметры датчика Холла TLI493D-A2B6

Диапазон измерений ±200 мТл
Интерфейс цифровой, I2C
Разрядность 12 бит

Максимальная частота опроса 7.5 кГц

На каждом из “ведомых” микроконтроллеров использовались 3 отдельных модуля
I2C для управления и чтения данных с датчиков. Триггер старта нового измерения был
настроен на завершение чтения данных с предыдущего, а новое чтение данных вызы-
вается по срабатыванию настроенного в микроконтроллере STM32 таймера. Частота
опроса в проведенных измерениях составляла f = 1 кГц. Кроме того, передача данных
по шине I2C проводится с использованием DMA (Direct Memory Access), что позволяет
практически одновременно считывать данные с 3 датчиков Холла. Таким образом про-
цесс записи и чтения данных детерминирован и работает в реальном времени. Данные
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между “ведомыми” и “ведущим” микроконтроллером передаются по интерфейсу SPI с
проверкой целостности данных при помощи расчета контрольной суммы. Блок-схема
платы регистрации и сбора данных представлена на рис. 2.

Рис. 2: Блок-схема платы регистрации и сбора данных. Область в пунктирной рамке
повторяется аналогично верхней части схемы. Плата регистрации включает в себя
36 датчиков Холла и 12 “ведомых” STM32.

Размер изготовленной платы выбран исходя из геометрии макета НТС так, что-
бы можно было жестко фиксировать ее положение внутри макета. Выводами явля-
ются разъем питания 5 В, разъем SMA входящего триггера и разъем USB под flash-
накопитель. Плата является двухслойной с толщиной 1.6 мм. Каждый микроконтрол-
лер имеет отдельную шину SWD (Serial Wire Debug) для отладки и прошивки. На рис.
3 представлена фотография изготовленной платы (а) и точки измерения магнитного
поля в полоидальном сечении токамака (б).

Глубина записи определяется объемом памяти SRAM микроконтроллера, которая
в случае STM32F412RGT6 составляет 256 кБ. Данные с датчиков Холла собираются
в виде регистров TLI493D. Одно измерение трех компонент занимает 6 байт. Таким
образом, можно записать до ∼43 тысяч точек на каждую из компонент магнитного
поля.

Аналогичные датчики Холла использовались для регистрации магнитных полей в
зале установки Т-15МД [16]. В работе была проведена калибровка датчиков в катушке
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Рис. 3: (а) фотография изготовленной платы регистрации и сбора данных датчиков
Холла; (б) расположение точек измерения датчиков Холла в полоидальном сечении.

Гельмгольца путем сравнения с сертифицированным прибором ТПУ-02. Было показано,
что ошибки измерения магнитного поля по компонентам не превышали 1%.

Первые результаты измерений магнитных полей. Целью первых измерений явля-
лась проверка работоспособности аппаратной части и методики регистрации магнитно-
го поля. Поэтому во время эксперимента использовалась одна печатная плата, описан-
ная в прошлом разделе. Она помещалась в полоидальном сечении между витками НТС
при тороидальном угле ϕ = 0. Ток на катушку подавался с помощью блока постоянного
тока TDK Lambda величиной 180 А. Результаты измерения компонент магнитного поля
по радиусу для вертикального положения Z = 0 показаны на рис. 4 слева.

Экспериментальные данные сравнивались с результатами моделирования в програм-
ме COMSOL методом конечных элементов. Для тороидального поля результаты рас-
чета и экспериментальные данные хорошо совпадают. Отметим, что уровень экспери-
ментальных сигналов радиального и вертикального полей были на уровне с шумовым
сигналом системы сбора данных. Так, среднее радиальное поле в эксперименте было
Br = 1.3 Гс, а вертикальное поле Bz = 2.3 Гс. На данном этапе можно сказать, что

отношение рассеянных полей к тороидальному полю не превышает
√

(Br +Bz)2

BT

< 4%.
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Рис. 4: Радиальные распределения компонент магнитного поля, которое создает НТС
для вертикального положения Z = 0 при токе через катушку I = 180 А и токе через
катушку I = 1200 А.

Для повышения уровня сигнала радиальной и вертикальной компонент магнитного
поля ток в катушке был увеличен до 1200 А. На рис. 4 справа представлены распре-
деления радиальной и вертикальной компоненты магнитного поля по полоидальному
сечению макета. Повышение поля в 6.4 раза приводит к значимому сигналу для вер-
тикальной компоненты поля, при этом радиальная компонента остается сравнима с
шумовым сигналом. Доминирующей компонентой рассеянного поля является верти-
кальная компонента Bz, что совпадает с численными расчетами для MEPhIST-1 [11]
и MEPhIST-0 [7]. Отношение рассеянных полей к тороидальному полю на радиусе

r = 80 мм составляет
√

(Br +Bz)2

BT

≈ 1.2%. При этом расчетное значение равняет-

ся
√

(Br +Bz)2

BT

≈ 0.3%. Подобное расхождение может быть связано с неточностью

установки тороидальной катушки. Для подтверждения этого фактора необходимо про-
ведение дополнительных расчетов и экспериментов.
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Для случая I = 1200 А рассмотрим двумерную карту распределения всех компонент
магнитного поля для эксперимента и в случае численного расчета. Сравнение представ-
лено на рис. 5.

Рис. 5: Двумерная карта компонент магнитного поля для экспериментальных данных
и для численного расчета.

В случае тороидальной компоненты BT экспериментальные данные демонстрируют
хорошее согласие с результатами моделирования как по амплитуде, так и по про-

62



номер 2, 2026 г. Краткие сообщения по физике ФИАН

странственному распределению. Для радиальной компоненты Br также наблюдается
совпадение общей структуры поля: в обоих случаях в верхней правой части сечения
присутствует область максимального положительного значения, аналогичная область
располагается в нижней левой части, а минимум поля приходится на линию Z = 0.
Амплитуды сигналов совпадают по порядку величины. Для вертикальной компоненты
Bz амплитуды также согласуются по порядку, однако совпадение пространственного
распределения ограничивается в основном радиальным направлением. В вертикальном
направлении экспериментальные данные и результаты моделирования демонстрируют
различия. Эти несоответствия могут быть обусловлены влиянием токопроводов,
особенностями реальной геометрии установки, а также небольшим наклоном или
смещением датчиков, что приводит к паразитному вкладу других компонент поля.

Заключение. В ходе работы создан экспериментальный комплекс, включающий мел-
комасштабный макет тороидальной катушки и систему измерения магнитных полей на
основе массива цифровых датчиков Холла. Конструкция макета позволяет воспроизво-
дить геометрию непрерывного тороидального соленоида и варьировать полоидальное
положение измерительных модулей, что обеспечивает гибкость при исследовании маг-
нитной конфигурации.

Разработанное устройство регистрации продемонстрировало высокую стабильность
работы и достаточную чувствительность для фиксации слабых отклонений магнитного
поля при высоких токах через катушку.

Проведённые измерения подтвердили работоспособность методики. Выявлено, что
основной компонентой рассеянных полей является вертикальная компонента, что согла-
суется с расчетами. Отношение рассеянных полей к тороидальному в эксперименте в
несколько раз превышает рассчитанное значение, что может быть связано с неточностя-
ми, допущенными при монтаже тороидальной катушки и токоподводами. Разработан-
ная методика создает основу для дальнейших исследований, включая определение гоф-
рировки тороидального поля и определение полоидальных распределений компонент
магнитного поля. Полученные экспериментальные данные и практические разработки
могут быть использованы в дальнейшем для разработки непрерывного тороидального
соленоида для сферического токамака, в том числе на основе высокотемпературных
сверхпроводников.

Исследование выполнено за счет гранта Российского научного фонда № 24-29-00749,
https://rscf.ru/project/24-29-00749/.
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